AbstractFor any prime,p, we construct a Cayley graph on the group,G, of affine linear transformations ofℤ/pℤ of degree 2(p−1) and second eigenvalue
% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0Firpepe0de9vr0-vr% 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaikdadaGcaa% qaaiaadchaaSqabaaaaa!373F!
$$2\sqrt p $$
with the following special property: the adjacency matrix of the graph is supported on the “blocks” associated to the trivial representation and the irreducible representation of sizep−1. SinceG is of orderp(p−1), the correspondingt-uniform Cayley hypergraph has essentially optimal second eigenvalue for this degree and size of the graph (see [2] for definitions). En route we give, for any integerk>1, a simple Cayley graph onpk nodes of degreep of second eigenvalue
% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0Firpepe0de9vr0-vr% 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgsMiJkaacI% cacaWGRbGaeyOeI0IaaGymaiaacMcadaGcaaqaaiaadchaaSqabaaa% aa!3C29!
$$ \leqslant (k - 1)\sqrt p $$
.
[1]
Alain Robert.
Introduction to the Representation Theory of Compact and Locally Compact Groups: Epilogue
,
1983
.
[2]
André Weil,et al.
Basic number theory
,
1967
.
[3]
E. Wigner.
Characteristic Vectors of Bordered Matrices with Infinite Dimensions I
,
1955
.
[4]
Avi Wigderson,et al.
On the second eigenvalue of hypergraphs
,
1995,
Comb..
[5]
H. Hasse,et al.
Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen.
,
1935
.
[6]
Helmut Hasse,et al.
Theorie der relativ-zyklischen algebraischen Funktionenkörper, insbesondere bei endlichem Konstantenkörper.
,
1935
.
[7]
A. Weil.
On Some Exponential Sums.
,
1948,
Proceedings of the National Academy of Sciences of the United States of America.
[8]
Alexander Lubotzky,et al.
Explicit expanders and the Ramanujan conjectures
,
1986,
STOC '86.