On the $q$-Enumeration of Barely Set-Valued Tableaux and Plane Partitions
暂无分享,去创建一个
[1] M. Chan,et al. Genera of Brill-Noether curves and staircase paths in Young tableaux , 2015, 1506.00516.
[2] Edward A. Bender,et al. Enumeration of Plane Partitions , 1972, J. Comb. Theory A.
[3] Kenneth H. Rosen,et al. Catalan Numbers , 2002 .
[4] Nathan Williams,et al. Promotion and rowmotion , 2011, Eur. J. Comb..
[5] Charalambos A. Charalambides,et al. Enumerative combinatorics , 2018, SIGA.
[6] Basil Gordon,et al. A proof of the Bender-Knuth conjecture. , 1983 .
[7] David Anderson,et al. 𝐾-classes of Brill–Noether Loci and a Determinantal Formula , 2017, 1705.02992.
[8] Victor Reiner,et al. Poset edge densities, nearly reduced words, and barely set-valued tableaux , 2016, J. Comb. Theory A.
[9] J. Shaw. Combinatory Analysis , 1917, Nature.
[10] S. Yau,et al. Geometry of Riemann surfaces and their moduli spaces , 2009 .
[11] Toufik Mansour,et al. Staircase tilings and k-Catalan structures , 2008, Discret. Math..
[12] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[13] Thomas Lam,et al. Combinatorial Hopf algebras and K-homology of Grassmanians , 2007, 0705.2189.
[14] Robert A. Proctor. Bruhat Lattices, Plane Partition Generating Functions, and Minuscule Representations , 1984, Eur. J. Comb..
[15] Paul Drube. Set-valued tableaux and generalized Catalan numbers , 2018, Australas. J Comb..
[16] Colin Defant,et al. Homomesy via Toggleability Statistics , 2021, 2108.13227.
[17] Sam Payne,et al. A tropical proof of the Brill-Noether Theorem , 2010, 1001.2774.
[18] J. S. Frame,et al. The Hook Graphs of the Symmetric Group , 1954, Canadian Journal of Mathematics.
[19] de Ng Dick Bruijn. A combinatorial problem , 1946 .
[20] Anders Skovsted Buch. A Littlewood-Richardson rule for theK-theory of Grassmannians , 2000 .
[21] M. Chan,et al. THE EXPECTED JAGGEDNESS OF ORDER IDEALS , 2015, Forum of Mathematics, Sigma.
[22] Bruce E. Sagan,et al. The Ubiquitous Young Tableau , 1988 .
[23] M. Chan,et al. Euler characteristics of Brill-Noether varieties , 2017, 1708.09378.
[24] Peter L. Guo,et al. Proof of a Conjecture of Reiner-Tenner-Yong on Barely Set-Valued Tableaux , 2018, SIAM J. Discret. Math..
[25] Sam Hopkins,et al. The CDE property for minuscule lattices , 2016, J. Comb. Theory, Ser. A.
[26] A. Yong,et al. Reduced Word Enumeration, Complexity, and Randomization , 2019, Electron. J. Comb..
[27] E. Gansner,et al. Matrix correspondences and the enumeration of plane partitions. , 1978 .
[28] John R. Stembridge,et al. On minuscule representations, plane partitions and involutions in complex Lie groups , 1994 .
[29] M. Schlosser,et al. Enumeration of standard barely set-valued tableaux of shifted shapes , 2020, 2006.03253.
[30] George E. Andrews,et al. The equivalence of the Bender-Knuth and MacMahon conjectures , 1977 .