On the $q$-Enumeration of Barely Set-Valued Tableaux and Plane Partitions

Barely set-valued tableaux are a variant of Young tableaux in which one box contains two numbers as its entry. It has recently been discovered that there are product formulas enumerating certain classes of barely set-valued tableaux. We give some q-analogs of these product formulas by introducing a version of major index for these tableaux. We also give product formulas and q-analogs for barely set-valued plane partitions. The proofs use several probability distributions on the set of order ideals of a poset, depending on the real parameter q > 0, which we think could be of independent interest.

[1]  M. Chan,et al.  Genera of Brill-Noether curves and staircase paths in Young tableaux , 2015, 1506.00516.

[2]  Edward A. Bender,et al.  Enumeration of Plane Partitions , 1972, J. Comb. Theory A.

[3]  Kenneth H. Rosen,et al.  Catalan Numbers , 2002 .

[4]  Nathan Williams,et al.  Promotion and rowmotion , 2011, Eur. J. Comb..

[5]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[6]  Basil Gordon,et al.  A proof of the Bender-Knuth conjecture. , 1983 .

[7]  David Anderson,et al.  𝐾-classes of Brill–Noether Loci and a Determinantal Formula , 2017, 1705.02992.

[8]  Victor Reiner,et al.  Poset edge densities, nearly reduced words, and barely set-valued tableaux , 2016, J. Comb. Theory A.

[9]  J. Shaw Combinatory Analysis , 1917, Nature.

[10]  S. Yau,et al.  Geometry of Riemann surfaces and their moduli spaces , 2009 .

[11]  Toufik Mansour,et al.  Staircase tilings and k-Catalan structures , 2008, Discret. Math..

[12]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[13]  Thomas Lam,et al.  Combinatorial Hopf algebras and K-homology of Grassmanians , 2007, 0705.2189.

[14]  Robert A. Proctor Bruhat Lattices, Plane Partition Generating Functions, and Minuscule Representations , 1984, Eur. J. Comb..

[15]  Paul Drube Set-valued tableaux and generalized Catalan numbers , 2018, Australas. J Comb..

[16]  Colin Defant,et al.  Homomesy via Toggleability Statistics , 2021, 2108.13227.

[17]  Sam Payne,et al.  A tropical proof of the Brill-Noether Theorem , 2010, 1001.2774.

[18]  J. S. Frame,et al.  The Hook Graphs of the Symmetric Group , 1954, Canadian Journal of Mathematics.

[19]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[20]  Anders Skovsted Buch A Littlewood-Richardson rule for theK-theory of Grassmannians , 2000 .

[21]  M. Chan,et al.  THE EXPECTED JAGGEDNESS OF ORDER IDEALS , 2015, Forum of Mathematics, Sigma.

[22]  Bruce E. Sagan,et al.  The Ubiquitous Young Tableau , 1988 .

[23]  M. Chan,et al.  Euler characteristics of Brill-Noether varieties , 2017, 1708.09378.

[24]  Peter L. Guo,et al.  Proof of a Conjecture of Reiner-Tenner-Yong on Barely Set-Valued Tableaux , 2018, SIAM J. Discret. Math..

[25]  Sam Hopkins,et al.  The CDE property for minuscule lattices , 2016, J. Comb. Theory, Ser. A.

[26]  A. Yong,et al.  Reduced Word Enumeration, Complexity, and Randomization , 2019, Electron. J. Comb..

[27]  E. Gansner,et al.  Matrix correspondences and the enumeration of plane partitions. , 1978 .

[28]  John R. Stembridge,et al.  On minuscule representations, plane partitions and involutions in complex Lie groups , 1994 .

[29]  M. Schlosser,et al.  Enumeration of standard barely set-valued tableaux of shifted shapes , 2020, 2006.03253.

[30]  George E. Andrews,et al.  The equivalence of the Bender-Knuth and MacMahon conjectures , 1977 .