Towards an Understanding of Complex Biological Membranes from Atomistic Molecular Dynamics Simulations

Computer simulation has emerged as a powerful tool for studying the structural and functional properties of complex biological membranes. In the last few years, the use of recently developed simulation methodologies and current generation force fields has permitted novel applications of molecular dynamics simulations, which have enhanced our understanding of the different physical processes governing biomembrane structure and dynamics. This review focuses on frontier areas of research with important biomedical applications. We have paid special attention to polyunsaturated lipids, membrane proteins and ion channels, surfactant additives in membranes, and lipid–DNA gene transfer complexes.

[1]  A. Kusumi,et al.  Cholesterol effects on the phosphatidylcholine bilayer polar region: a molecular simulation study. , 2000, Biophysical journal.

[2]  K. Beyer,et al.  Stages of the bilayer-micelle transition in the system phosphatidylcholine-C12E8 as studied by deuterium- and phosphorous-NMR, light scattering, and calorimetry. , 1995, Biophysical journal.

[3]  K. Rajamoorthi,et al.  Bilayers of arachidonic acid containing phospholipids studied by 2H and 31P NMR spectroscopy. , 1991, Biochemistry.

[4]  A. Miller,et al.  Human gene therapy comes of age , 1992, Nature.

[5]  Alexander D. MacKerell,et al.  An Improved Empirical Potential Energy Function for Molecular Simulations of Phospholipids , 2000 .

[6]  D. Huster,et al.  Water permeability of polyunsaturated lipid membranes measured by 17O NMR. , 1997, Biophysical journal.

[7]  M. Klein,et al.  Constant-pressure molecular dynamics investigation of cholesterol effects in a dipalmitoylphosphatidylcholine bilayer. , 1998, Biophysical journal.

[8]  Alexander D. MacKerell,et al.  An Empirical Potential Energy Function for Phospholipids: Criteria for Parameter Optimization and Applications , 1996 .

[9]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[10]  Y. K. Levine,et al.  Membranes of Palmitoyloleoylphosphatidylcholine and C 12 E 4 A Lattice Model Simulation , 2000 .

[11]  S. White,et al.  Membrane protein folding and stability: physical principles. , 1999, Annual review of biophysics and biomolecular structure.

[12]  Hee-Yong Kim,et al.  n−3 Fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues , 2000, Lipids.

[13]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[14]  D. Tobias,et al.  Electrostatics calculations: recent methodological advances and applications to membranes. , 2001, Current opinion in structural biology.

[15]  Reinhard Lipowsky,et al.  Structure and dynamics of membranes , 1995 .

[16]  Roderick MacKinnon,et al.  Energetic optimization of ion conduction rate by the K+ selectivity filter , 2001, Nature.

[17]  M. Brown,et al.  Modulation of Rhodopsin Function by Properties of the Membrane Bilayer , 2022 .

[18]  T. Perlmann,et al.  Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. , 2000, Science.

[19]  F. Artzner,et al.  Observation of a Rectangular Columnar Phase in Condensed Lamellar Cationic Lipid-DNA Complexes , 1998 .

[20]  F. Artzner,et al.  THERMOTROPIC PHASE BEHAVIOR OF CATIONIC LIPID: DNA COMPLEXES COMPARED TO BINARY LIPID MIXTURES , 1999 .

[21]  D. Tieleman,et al.  Exploring models of the influenza A M2 channel: MD simulations in a phospholipid bilayer. , 2000, Biophysical journal.

[22]  W. Shinoda,et al.  Molecular Dynamics Study on Electrostatic Properties of a Lipid Bilayer: Polarization, Electrostatic Potential, and the Effects on Structure and Dynamics of Water near the Interface , 1998 .

[23]  Joachim O. Rädler,et al.  Structure of DNA-Cationic Liposome Complexes: DNA Intercalation in Multilamellar Membranes in Distinct Interhelical Packing Regimes , 1997, Science.

[24]  R. Gabdoulline,et al.  Comparison of the Structures of Dimyristoylphosphatidylcholine in the Presence and Absence of Cholesterol by Molecular Dynamics Simulations , 1996 .

[25]  M S Sansom,et al.  Membrane simulations: bigger and better? , 2000, Current opinion in structural biology.

[26]  S. Feller,et al.  Molecular dynamics simulations of lipid bilayers , 2000 .

[27]  R. MacKinnon,et al.  Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution , 2001, Nature.

[28]  J. Northrop,et al.  Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[29]  K V Damodaran,et al.  A comparison of DMPC- and DLPE-based lipid bilayers. , 1994, Biophysical journal.

[30]  V. Cherezov,et al.  Structure of Mixed Multilayers of Palmitoyloleoylphosphatidylcholine and Oligo(oxyethylene glycol) Monododecyl Ether Determined by X-ray and Neutron Diffraction , 1996 .

[31]  D. Engelman,et al.  Membrane protein folding and oligomerization: the two-stage model. , 1990, Biochemistry.

[32]  M. Lagarde,et al.  Conformational analysis of isolated docosahexaenoic acid (22:6 n-3) and its 14 (S) and 11 (S) hydroxy derivatives by force field calculations , 1994 .

[33]  Richard W. Pastor,et al.  Constant surface tension simulations of lipid bilayers: The sensitivity of surface areas and compressibilities , 1999 .

[34]  A. Mark,et al.  Simulation of the spontaneous aggregation of phospholipids into bilayers. , 2001, Journal of the American Chemical Society.

[35]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[36]  R. Winter,et al.  Effect of temperature, pressure and lipid acyl chain length on the structure and phase behaviour of phospholipid–gramicidin bilayers , 2000 .

[37]  B. Roux,et al.  Energetics of ion conduction through the K + channel , 2022 .

[38]  M Montal,et al.  Design of molecular function: channels of communication. , 1995, Annual review of biophysics and biomolecular structure.

[39]  J. Glomset,et al.  Computer-based modeling of the conformation and packing properties of docosahexaenoic acid. , 1986, Journal of lipid research.

[40]  E. Evans,et al.  Effect of chain length and unsaturation on elasticity of lipid bilayers. , 2000, Biophysical journal.

[41]  W. DeGrado,et al.  Synthetic amphiphilic peptide models for protein ion channels. , 1988, Science.

[42]  R. Mulligan,et al.  The basic science of gene therapy. , 1993, Science.

[43]  D. Tieleman,et al.  Structure and dynamics of the pore‐lining helix of the nicotinic receptor: MD simulations in water, lipid bilayers, and transbilayer bundles , 2000, Proteins.

[44]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[45]  E. Lindahl,et al.  Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. , 2000, Biophysical journal.

[46]  M. Klein,et al.  Influence of highly polyunsaturated lipid acyl chains of biomembranes on the NMR order parameters. , 2001, Journal of the American Chemical Society.

[47]  H. Strey,et al.  Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation. , 1997, Biophysical journal.

[48]  R. Hodges,et al.  Conformational changes of phospholipid headgroups induced by a cationic integral membrane peptide as seen by deuterium magnetic resonance. , 1989, Biochemistry.

[49]  L. Golubović,et al.  FLUCTUATIONS OF QUASI-TWO-DIMENSIONAL SMECTICS INTERCALATED BETWEEN MEMBRANES IN MULTILAMELLAR PHASES OF DNA-CATIONIC LIPID COMPLEXES , 1998 .

[50]  E Jakobsson,et al.  Computer simulation studies of biological membranes: progress, promise and pitfalls. , 1997, Trends in biochemical sciences.

[51]  D. Brown,et al.  Structure and Origin of Ordered Lipid Domains in Biological Membranes , 1998, The Journal of Membrane Biology.

[52]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[53]  M. Klein,et al.  Structural properties of a highly polyunsaturated lipid bilayer from molecular dynamics simulations. , 2001, Biophysical journal.

[54]  Alan E. Mark,et al.  Effect of Undulations on Surface Tension in Simulated Bilayers , 2001 .

[55]  J. Gesell,et al.  Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy , 1999, Nature Structural Biology.

[56]  M. Lafleur,et al.  Differential scanning calorimetry and (2)H nuclear magnetic resonance and Fourier transform infrared spectroscopy studies of the effects of transmembrane alpha-helical peptides on the organization of phosphatidylcholine bilayers. , 2001, Biochimica et biophysica acta.

[57]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[58]  Michael L. Klein,et al.  Molecular Dynamics Study of a Lipid−DNA Complex , 1999 .

[59]  J. Nagle,et al.  Structure of lipid bilayers. , 2000, Biochimica et biophysica acta.

[60]  Huey W. Huang,et al.  Action of antimicrobial peptides: two-state model. , 2000, Biochemistry.

[61]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[62]  R. Ashley,et al.  The transmembrane domain of influenza A M2 protein forms amantadine-sensitive proton channels in planar lipid bilayers. , 1992, Virology.

[63]  N. Dan Multilamellar structures of DNA complexes with cationic liposomes. , 1997, Biophysical journal.

[64]  E Jakobsson,et al.  Combined Monte Carlo and molecular dynamics simulation of fully hydrated dioleyl and palmitoyl-oleyl phosphatidylcholine lipid bilayers. , 1999, Biophysical journal.

[65]  Mark E. Tuckerman,et al.  Exploiting multiple levels of parallelism in Molecular Dynamics based calculations via modern techniques and software paradigms on distributed memory computers , 2000 .

[66]  B. Hille Ionic channels of excitable membranes , 2001 .

[67]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data , 2000 .

[68]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[69]  D C Rees,et al.  Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. , 1998, Science.

[70]  A. Mark,et al.  Molecular dynamics simulations of mixed micelles modeling human bile. , 2002, Biochemistry.

[71]  E. Lindahl,et al.  Spatial and energetic-entropic decomposition of surface tension in lipid bilayers from molecular dynamics simulations , 2000 .

[72]  T. Trouard,et al.  Low-temperature 2H NMR spectroscopy of phospholipid bilayers containing docosahexaenoyl (22:6 omega 3) chains. , 1991, Biochemistry.

[73]  T. Salditt,et al.  TWO-DIMENSIONAL SMECTIC ORDERING OF LINEAR DNA CHAINS IN SELF-ASSEMBLED DNA-CATIONIC LIPOSOME MIXTURES , 1997 .

[74]  B. Roux,et al.  Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[75]  C. O’Hern,et al.  Sliding Columnar Phase of DNA-Lipid Complexes , 1997, cond-mat/9712049.

[76]  R. Keir Packing away carbon isotopes , 1992, Nature.

[77]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[78]  M. Klein,et al.  Molecular Dynamics Study of the Effect of Surfactant on a Biomembrane , 2001 .

[79]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[80]  J. Killian,et al.  Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. , 1998, Biochemistry.

[81]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules J. Am. Chem. Soc. 1995, 117, 5179−5197 , 1996 .

[82]  W. Gelbart,et al.  Structure, stability, and thermodynamics of lamellar DNA-lipid complexes. , 1998, Biophysical journal.

[83]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[84]  B. Konig,et al.  Hydration and structural properties of mixed lipid/surfactant model membranes , 1997 .

[85]  M. Klein,et al.  Electrostatic interactions in a neutral model phospholipid bilayer by molecular dynamics simulations , 2002 .

[86]  S. Oiki,et al.  M2 delta, a candidate for the structure lining the ionic channel of the nicotinic cholinergic receptor. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[87]  M. Klein,et al.  Molecular dynamics simulation of a synthetic ion channel. , 1998, Biophysical journal.

[88]  M. Klein,et al.  Constant pressure and temperature molecular dynamics simulation of a fully hydrated liquid crystal phase dipalmitoylphosphatidylcholine bilayer. , 1995, Biophysical journal.

[89]  E Jakobsson,et al.  Combined Monte Carlo and molecular dynamics simulation of hydrated lipid-cholesterol lipid bilayers at low cholesterol concentration. , 2001, Biophysical journal.

[90]  O. Edholm,et al.  Cholesterol in model membranes. A molecular dynamics simulation. , 1992, Biophysical journal.

[91]  L. A. Meijer,et al.  Self-consistent-field modeling of complex molecules with united atom detail in inhomogeneous systems. Cyclic and branched foreign molecules in dimyristoylphosphatidylcholine membranes , 1999 .

[92]  T Salditt,et al.  An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. , 1998, Science.

[93]  J. Wolff Gene therapeutics. Methods and applications of direct gene transfer Edited by J. A. Wolff. Published 1994 by Birkhäuser Verlag AG, Basel, Boston. ISBN: 3-7643-3650-1 and 0-8176-3650-1 (hardcover). Price: DM 158.00/£59.00 , 1996, The Journal of Steroid Biochemistry and Molecular Biology.

[94]  A. Blume,et al.  Lipid/Detergent Interaction Thermodynamics as a Function of Molecular Shape , 1997 .

[95]  Gerhard Gompper,et al.  Mobility and elasticity of self-assembled membranes. , 1999 .

[96]  Alexander D. MacKerell,et al.  Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies. , 1997, Biophysical journal.

[97]  U. Essmann,et al.  Dynamical properties of phospholipid bilayers from computer simulation. , 1999, Biophysical journal.

[98]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[99]  E. Evans,et al.  Water permeability and mechanical strength of polyunsaturated lipid bilayers. , 2000, Biophysical journal.

[100]  Teresa M. Sinnwell,et al.  2H nuclear magnetic resonance order parameter profiles suggest a change of molecular shape for phosphatidylcholines containing a polyunsaturated acyl chain. , 1995, Biophysical journal.

[101]  N. Unwin Acetylcholine receptor channel imaged in the open state , 1995, Nature.

[102]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[103]  R. Cantor,et al.  Lipid composition and the lateral pressure profile in bilayers. , 1999, Biophysical journal.

[104]  J. Rigaud,et al.  Phospholipid vesicle solubilization and reconstitution by detergents. Symmetrical analysis of the two processes using octaethylene glycol mono-n-dodecyl ether. , 1990, Biochemistry.

[105]  A Kusumi,et al.  Charge pairing of headgroups in phosphatidylcholine membranes: A molecular dynamics simulation study. , 1999, Biophysical journal.

[106]  Ronald G. Crystal,et al.  Transfer of Genes to Humans: Early Lessons and Obstacles to Success , 1995, Science.

[107]  Molecular Dynamics Simulations of a Phospholipid-Detergent Mixture , 2001 .

[108]  R. C. Reeder,et al.  A Coarse Grain Model for Phospholipid Simulations , 2001 .

[109]  M. Klein,et al.  The M2 channel of influenza A virus: a molecular dynamics study , 1998, FEBS letters.

[110]  A. Smondyrev,et al.  Structure of dipalmitoylphosphatidylcholine/cholesterol bilayer at low and high cholesterol concentrations: molecular dynamics simulation. , 1999, Biophysical journal.

[111]  W. Richards,et al.  Behavior of cholesterol and its effect on head group and chain conformations in lipid bilayers: a molecular dynamics study. , 1995, Biophysical journal.

[112]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[113]  A. Kiselev,et al.  Determination of Structural Parameters and Hydration of Unilamellar POPC/C12E4 Vesicles at High Water Excess from Neutron Scattering Curves Using a Novel Method of Evaluation , 2001 .

[114]  H. Berendsen,et al.  Molecular dynamics simulations of a fully hydrated dipalmitoylphosphatidylcholine bilayer with different macroscopic boundary conditions and parameters , 1996 .

[115]  S. White,et al.  Structure, location, and lipid perturbations of melittin at the membrane interface. , 2001, Biophysical journal.

[116]  T. Salditt,et al.  Structure and Interfacial Aspects of Self-Assembled Cationic Lipid−DNA Gene Carrier Complexes§ , 1998 .

[117]  M. Ala-Korpela,et al.  Structure and dynamic properties of diunsaturated 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine lipid bilayer from molecular dynamics simulation. , 1997, Biophysical journal.

[118]  T. Engels,et al.  Molecular dynamics simulations of stratum corneum lipid models: fatty acids and cholesterol. , 2001, Biochimica et biophysica acta.

[119]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[120]  Robijn Bruinsma,et al.  Electrostatics of DNA-cationic lipid complexes: isoelectric instability , 1998 .