Zonotopes and Kalman observers: Gain optimality under distinct uncertainty paradigms and robust convergence

State bounding observation based on zonotopes is the subject of this paper. Dealing with zonotopes is motivated by set operations resulting in simple matrix calculations with regard to the often huge number of facets and vertices of the equivalent polytopes. Discrete-time LTV/LPV systems with state and measurement uncertainties are considered. Based on a new zonotope size criterion called F W -radius, and by merging optimal and robust observer gain designs, a Zonotopic Kalman Filter (ZKF) is proposed with a proof of robust convergence. The notion of covariation is introduced and results in an explicit bridge between the zonotopic set-membership and the stochastic paradigms for Kalman Filtering. No intersection is used and the influence of the reduction operator limiting to a tunable maximum the size of the matrices involved in the zonotopic set computations is fully taken into account in the LMI-based robust stability analysis. A numerical example illustrates the effectiveness of the proposed ZKF.

[1]  Eduardo F. Camacho,et al.  Guaranteed state estimation by zonotopes , 2005, Autom..

[2]  Manfred Morari,et al.  Multi-Parametric Toolbox 3.0 , 2013, 2013 European Control Conference (ECC).

[3]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .

[4]  Wolfgang Kuehn,et al.  Rigorously computed orbits of dynamical systems without the wrapping effect , 1998, Computing.

[5]  M. C. D. Oliveiraa,et al.  A new discrete-time robust stability condition ( , 1999 .

[6]  Luigi Chisci,et al.  Recursive state bounding by parallelotopes , 1996, Autom..

[7]  Y. Candau,et al.  Set membership state and parameter estimation for systems described by nonlinear differential equations , 2004, Autom..

[8]  Olivier Bernard,et al.  Interval observers for linear time-invariant systems with disturbances , 2011, Autom..

[9]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[10]  Lang,et al.  [Graduate Texts in Mathematics] Cyclotomic Fields I and II Volume 121 || Character Sums , 1990 .

[11]  Vladimir A. Yakubovich,et al.  Linear Matrix Inequalities in System and Control Theory (S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan) , 1995, SIAM Rev..

[12]  C. Combastel A state bounding observer based on zonotopes , 2003, 2003 European Control Conference (ECC).

[13]  J. Geromel,et al.  A new discrete-time robust stability condition , 1999 .

[14]  C. F. Long,et al.  Influence of the manufacturing process on the scheduling problem , 1976 .

[15]  D. Bertsekas,et al.  Recursive state estimation for a set-membership description of uncertainty , 1971 .

[16]  F. Schweppe Recursive state estimation: Unknown but bounded errors and system inputs , 1967 .

[17]  A. Kurzhanski,et al.  Ellipsoidal Calculus for Estimation and Control , 1996 .

[18]  Denis V. Efimov,et al.  Interval State Estimation for a Class of Nonlinear Systems , 2012, IEEE Transactions on Automatic Control.

[19]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[20]  Ricardo C. L. F. Oliveira,et al.  Time-varying discrete-time linear systems with bounded rates of variation: Stability analysis and control design , 2009, Autom..

[21]  H. Sorenson,et al.  Guest editorial: On applications of Kalman filtering , 1983 .

[22]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[23]  S. Jørgensen,et al.  Movement rules for individual-based models of stream fish , 1999 .

[24]  Manfred Morari,et al.  Explicit MPC for LPV Systems: Stability and Optimality , 2012, IEEE Transactions on Automatic Control.

[25]  J. Gouzé,et al.  Interval observers for uncertain biological systems , 2000 .

[26]  F. Lewis Optimal Estimation: With an Introduction to Stochastic Control Theory , 1986 .

[27]  Christophe Combastel,et al.  Stable Interval Observers in BBC for Linear Systems With Time-Varying Input Bounds , 2013, IEEE Transactions on Automatic Control.

[28]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[29]  Vicenç Puig,et al.  Robust fault detection based on adaptive threshold generation using interval LPV observers , 2012 .

[30]  Pravin Varaiya,et al.  Guaranteed State Estimation , 2014 .

[31]  Denis V. Efimov,et al.  Control of Nonlinear and LPV Systems: Interval Observer-Based Framework , 2013, IEEE Transactions on Automatic Control.

[32]  C. Combastel A State Bounding Observer for Uncertain Non-linear Continuous-time Systems based on Zonotopes , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[33]  Didier Dumur,et al.  Zonotopic guaranteed state estimation for uncertain systems , 2013, Autom..

[34]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[35]  R. Hunger Floating Point Operations in Matrix-Vector Calculus , 2022 .

[36]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[37]  Steven X. Ding,et al.  Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools , 2008 .

[38]  Gene H. Golub,et al.  Matrix computations , 1983 .