Synergistic Enhancement of Thermal Conductivity and Dielectric Properties in Al2O3/BaTiO3/PP Composites

Multifunctional polymer composites with both high dielectric constants and high thermal conductivity are urgently needed by high-temperature electronic devices and modern microelectromechanical systems. However, high heat-conduction capability or dielectric properties of polymer composites all depend on high-content loading of different functional thermal-conductive or high-dielectric ceramic fillers (every filler volume fraction ≥ 50%, i.e., ffiller ≥ 50%), and an overload of various fillers (fthermal-conductive filler + fhigh-dielectric filler > 50%) will decrease the processability and mechanical properties of the composite. Herein, series of alumina/barium titanate/polypropylene (Al2O3/BT/PP) composites with high dielectric- and high thermal-conductivity properties are prepared with no more than 50% volume fraction of total ceramic fillers loading, i.e., ffillers ≤ 50%. Results showed the thermal conductivity of the Al2O3/BT/PP composite is up to 0.90 W/m·K with only 10% thermal-conductive Al2O3 filler, which is 4.5 times higher than the corresponding Al2O3/PP composites. Moreover, higher dielectric strength (Eb) is also found at the same loading, which is 1.6 times higher than PP, and the Al2O3/BT/PP composite also exhibited high dielectric constant (εr = 18 at 1000 Hz) and low dielectric loss (tan δ ≤ 0.030). These excellent performances originate from the synergistic mechanism between BaTiO3 macroparticles and Al2O3 nanoparticles.

[1]  N. Jayasundere,et al.  Dielectric constant for binary piezoelectric 0‐3 composites , 1993 .

[2]  E. Giannelis,et al.  Barium titanate/epoxy composite dielectric materials for integrated thin film capacitors , 1998, 1998 Proceedings. 48th Electronic Components and Technology Conference (Cat. No.98CH36206).

[3]  J. Obrzut,et al.  Dielectric Properties of Polymer/Ferroelectric Ceramic Composites from 100 Hz to 10 GHz , 2001 .

[4]  R. Popielarz,et al.  Polymer Composites with High Dielectric Constant , 2002 .

[5]  Vladimir M. Shalaev,et al.  Optical cloaking with metamaterials , 2006, physics/0611242.

[6]  E. Barshaw,et al.  High Energy Density (HED) Biaxially-Oriented Poly-Propylene (BOPP) Capacitors For Pulse Power Applications , 2007, IEEE transactions on magnetics.

[7]  Peter J. Hotchkiss,et al.  Phosphonic Acid‐Modified Barium Titanate Polymer Nanocomposites with High Permittivity and Dielectric Strength , 2007 .

[8]  Qiming Zhang,et al.  Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature , 2008, Science.

[9]  Lijie Dong,et al.  Enhancement of dielectric constant and piezoelectric coefficient of ceramic-polymer composites by interface chelation , 2009 .

[10]  C. Zhi,et al.  Alignment of Boron Nitride Nanotubes in Polymeric Composite Films for Thermal Conductivity Improvement , 2010 .

[11]  U. Simon,et al.  On the application potential of gold nanoparticles in nanoelectronics and biomedicine , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  K. Rajab,et al.  All-dielectric invisibility cloaks made of BaTiO3-loaded polyurethane foam , 2011, New Journal of Physics.

[13]  Cherie R. Kagan,et al.  Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. , 2012, ACS nano.

[14]  Lucio Vegni,et al.  Electromagnetic modeling of ellipsoidal nanoparticles for sensing applications , 2013 .

[15]  L. L. Spada,et al.  Conical Nanoparticles for Blood Disease Detection , 2013 .

[16]  L. L. Spada,et al.  Nanoparticle device for biomedical and optoelectronics applications , 2013 .

[17]  J. Zhai,et al.  A tunable metamaterial dependent on electric field at terahertz with barium strontium titanate thin film , 2014 .

[18]  Lili Zhang,et al.  High-Temperature Capacitor Polymer Films , 2014, Journal of Electronic Materials.

[19]  R. Sun,et al.  The effect of interfacial state on the thermal conductivity of functionalized Al2O3 filled glass fibers reinforced polymer composites , 2015 .

[20]  Abdelhafid Chaabi,et al.  Design of a Compact and High Sensitivity Temperature Sensor Using Metamaterial , 2015 .

[21]  Guangzu Zhang,et al.  Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets , 2015 .

[22]  T. Jackson,et al.  Flexible high-temperature dielectric materials from polymer nanocomposites , 2015, Nature.

[23]  R. Curry,et al.  High frequency properties of high voltage barium titanate-ferrite multiferroic metamaterial composites , 2016, IEEE Transactions on Dielectrics and Electrical Insulation.

[24]  Guangzu Zhang,et al.  Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures , 2016, Proceedings of the National Academy of Sciences.

[25]  Liang Li,et al.  Reinforced polyaniline/polyvinyl alcohol conducting hydrogel from a freezing–thawing method as self-supported electrode for supercapacitors , 2016, Journal of Materials Science.

[26]  G. Lubineau,et al.  Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings , 2016 .

[27]  Y. Huang,et al.  Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications , 2016 .

[28]  Y. Liu,et al.  Radar Cross Section Reduction of a Microstrip Antenna Based on Polarization Conversion Metamaterial , 2016, IEEE Antennas and Wireless Propagation Letters.

[29]  J. Teng,et al.  Hybrid bilayer plasmonic metasurface efficiently manipulates visible light , 2016, Science Advances.

[30]  S. Kim,et al.  Synergistic effect of hybrid graphene nanoplatelet and multi-walled carbon nanotube fillers on the thermal conductivity of polymer composites and theoretical modeling of the synergistic effect , 2016 .

[31]  T. K. Dey,et al.  Finite element modelling and experimental investigation on effective thermal conductivity of AlN (nano) particles reinforced HDPE polymer nanocomposites , 2016 .

[32]  S. Gamal,et al.  Effect of Addition of Colloidal Silica to Films of Polyimide, Polyvinylpyridine, Polystyrene, and Polymethylmethacrylate Nano-Composites , 2016, Materials.

[33]  Junsheng Yu,et al.  Tailoring the Dielectric Layer Structure for Enhanced Performance of Organic Field-Effect Transistors: The Use of a Sandwiched Polar Dielectric Layer , 2016, Materials.

[34]  P. González‐Morones,et al.  Metamaterial Behavior of Polymer Nanocomposites Based on Polypropylene/Multi-Walled Carbon Nanotubes Fabricated by Means of Ultrasound-Assisted Extrusion , 2016, Materials.

[35]  Liang Li,et al.  3D Nanostructured Polypyrrole/Sodium Alginate Conducting Hydrogel from self-assembly with High Supercapacitor Performance , 2017 .

[36]  R. Sun,et al.  Polymer Composite with Improved Thermal Conductivity by Constructing a Hierarchically Ordered Three-Dimensional Interconnected Network of BN. , 2017, ACS applied materials & interfaces.

[37]  Long-Qing Chen,et al.  High‐Performance Polymers Sandwiched with Chemical Vapor Deposited Hexagonal Boron Nitrides as Scalable High‐Temperature Dielectric Materials , 2017, Advanced materials.

[38]  Hang Zhao,et al.  Carbon Coated Boron Nitride Nanosheets for Polymer Nanocomposites with Enhanced Dielectric Performance , 2017, Materials.

[39]  Ashraf F. Ali,et al.  Processing, Dynamic mechanical thermal analysis, and dielectric properties of barium titanate/cellulosic polymer nanocomposites , 2017 .

[40]  Rui Li,et al.  Effect of Polymer Matrix on the Structure and Electric Properties of Piezoelectric Lead Zirconatetitanate/Polymer Composites , 2017, Materials.

[41]  Byoungho Lee,et al.  Metamaterials and Metasurfaces for Sensor Applications , 2017, Sensors.

[42]  A. Neogi,et al.  Radio-frequency actuated polymer-based phononic meta-materials for control of ultrasonic waves , 2017 .

[43]  P. Huang,et al.  Thermal conductivity and dielectric properties of PEDOT:PSS-AlN filler reinforced water-soluble polymer composites , 2017 .

[44]  Yang Hao,et al.  Modeling and design for electromagnetic surface wave devices , 2017 .

[45]  Zeyu Li,et al.  Poly(methyl methacrylate)/boron nitride nanocomposites with enhanced energy density as high temperature dielectrics , 2017 .

[46]  N. Engheta,et al.  Near-zero refractive index photonics , 2017, Nature Photonics.

[47]  Hong Wang,et al.  High‐Energy‐Density Dielectric Polymer Nanocomposites with Trilayered Architecture , 2017 .

[48]  W. Hong,et al.  Dielectric response and breakdown behavior of polymer-ceramic nanocomposites: The effect of nanoparticle distribution , 2017 .

[49]  P. Shin,et al.  Magnetic field-induced enhancement of thermal conductivities in polymer composites by linear clustering of spherical particles , 2018 .

[50]  J. Zha,et al.  Enhanced thermal conductivity and mechanical property through boron nitride hot string in polyvinylidene fluoride fibers by electrospinning , 2018 .

[51]  S. N. Leung,et al.  Thermally conductive polymer composites and nanocomposites: Processing-structure-property relationships , 2018, Composites Part B: Engineering.

[52]  L. Bai,et al.  Constructing continuous networks by branched alumina for enhanced thermal conductivity of polymer composites , 2018, Composites Science and Technology.

[53]  Ronggui Yang,et al.  Thermal conductivity of polymers and polymer nanocomposites , 2018, Materials Science and Engineering: R: Reports.

[54]  M. Zhang,et al.  Improved dielectric properties, mechanical properties, and thermal conductivity properties of polymer composites via controlling interfacial compatibility with bio-inspired method , 2018 .

[55]  Y. Mai,et al.  Multi-functional interface tailoring for enhancing thermal conductivity, flame retardancy and dynamic mechanical property of epoxy/Al2O3 composites , 2018 .

[56]  D. Drummer,et al.  Thermal Conductivity of Aluminosilicate- and Aluminum Oxide-Filled Thermosets for Injection Molding: Effect of Filler Content, Filler Size and Filler Geometry , 2018, Polymers.

[57]  Longtu Li,et al.  Hierarchical-structured dielectric permittivity and breakdown performances of polymer-ceramic nanocomposites , 2018 .