Characterization and Modeling of the Transient Safe Operating Area in LDMOS Transistors

The boundaries that determine the LDMOS transient safe operating area are presented. It includes the time-independent electrical SOA (eSOA) and short-pulse transient SOA post device snapback. A compact modeling methodology is introduced for high voltage LDMOS with minimal circuit simulation convergence shortcomings. By adding a failure monitor, the model proposed can be used to determine both the boundaries of eSOA and short-pulse transient SOA.

[1]  Aihua Dong,et al.  Characterization of Dielectric Breakdown and Lifetime Analysis for Silicon Nitride Metal-Insulator-Metal Capacitors under Electrostatic Discharge Stresses , 2018, 2018 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA).

[2]  Yuanzhong Zhou,et al.  Modeling snapback of LVTSCR devices for ESD circuit simulation using advanced BJT and MOS models , 2007, 2007 29th Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD).

[3]  S Malobabic,et al.  Analysis of Safe Operating Area of NLDMOS and PLDMOS Transistors Subject to Transient Stresses , 2010, IEEE Transactions on Electron Devices.

[4]  Philip L. Hower Safe operating area - a new frontier in Ldmos design , 2002, Proceedings of the 14th International Symposium on Power Semiconductor Devices and Ics.

[5]  T. Luk,et al.  Modeling MOS snapback for circuit-level ESD simulation using BSIM3 and VBIC models , 2005, Sixth international symposium on quality electronic design (isqed'05).

[6]  H.C. de Graaff,et al.  Avalanche multiplication in a compact bipolar transistor model for circuit simulation , 1988, Proceedings of the 1988 Bipolar Circuits and Technology Meeting,.

[7]  W. J. Kloosterman,et al.  A comprehensive bipolar avalanche multiplication compact model for circuit simulation , 2000, Proceedings of the 2000 BIPOLAR/BiCMOS Circuits and Technology Meeting (Cat. No.00CH37124).

[8]  Javier A. Salcedo,et al.  Thermal failure and voltage overshoot models for diode behavior under electrostatic discharge stresses , 2018, 2018 18th International Workshop on Junction Technology (IWJT).

[9]  W. Fichtner,et al.  Analysis and compact modeling of lateral DMOS power devices under ESD stress conditions , 1999, Electrical Overstress/Electrostatic Discharge Symposium Proceedings. 1999 (IEEE Cat. No.99TH8396).

[10]  P.L. Hower,et al.  Snapback and safe operating area of LDMOS transistors , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[11]  Javier A. Salcedo,et al.  Modeling and Simulation of Comprehensive Diode Behavior Under Electrostatic Discharge Stresses , 2019, IEEE Transactions on Device and Materials Reliability.

[12]  Javier A. Salcedo,et al.  Modeling of high voltage devices for ESD event simulation in SPICE , 2012, Microelectron. J..

[13]  Ming-Dou Ker,et al.  Characterization of SOA in Time Domain and the Improvement Techniques for Using in High-Voltage Integrated Circuits , 2012, IEEE Transactions on Device and Materials Reliability.

[14]  Chenming Hu,et al.  MOSFET Modeling & BSIM3 User’s Guide , 1999 .

[15]  D. Wunsch,et al.  Determination of Threshold Failure Levels of Semiconductor Diodes and Transistors Due to Pulse Voltages , 1968 .

[16]  D Pogany,et al.  Enhancement of the Electrical Safe Operating Area of Integrated DMOS Transistors With Respect to High-Energy Short Duration Pulses , 2010, IEEE Transactions on Electron Devices.

[17]  Javier A. Salcedo,et al.  Compact Thermal Failure Model for Devices Subject to Electrostatic Discharge Stresses , 2015, IEEE Transactions on Electron Devices.

[18]  P. Hower,et al.  Safe operating area considerations in LDMOS transistors , 1999, 11th International Symposium on Power Semiconductor Devices and ICs. ISPSD'99 Proceedings (Cat. No.99CH36312).