Improving Performance of Evolutionary Algorithms with Application to Fuzzy Control of Truck Backer-Upper System

We propose a method to improve the performance of evolutionary algorithms (EA). The proposed approach defines operators which can modify the performance of EA, including Levy distribution function as a strategy parameters adaptation, calculating mean point for finding proper region of breeding offspring, and shifting strategy parameters to change the sequence of these parameters. Thereafter, a set of benchmark cost functions is utilized to compare the results of the proposed method with some other well-known algorithms. It is shown that the speed and accuracy of EA are increased accordingly. Finally, this method is exploited to optimize fuzzy control of truck backer-upper system.

[1]  W.S. Tang,et al.  A Jumping Genes Paradigm: Theory, Verification and Applications , 2008, IEEE Circuits and Systems Magazine.

[2]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[3]  Kumar Chellapilla,et al.  Combining mutation operators in evolutionary programming , 1998, IEEE Trans. Evol. Comput..

[4]  Li-Xin Wang,et al.  A Course In Fuzzy Systems and Control , 1996 .

[5]  Javad Poshtan,et al.  Momentum coefficient for promoting accuracy and convergence speed of evolutionary programming , 2012, Appl. Soft Comput..

[6]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[7]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[8]  Jyh-Horng Chou,et al.  Improved Quantum-Inspired Evolutionary Algorithm for Engineering Design Optimization , 2012 .

[9]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[10]  Hyun-Su Kim,et al.  Design of fuzzy logic controller for smart base isolation system using genetic algorithm , 2006 .

[11]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[12]  C. Cannings,et al.  Evolutionary Game Theory , 2010 .

[13]  Qi Lin,et al.  The design and implementation of a very fast experimental pipelining computer , 2008, Journal of Computer Science and Technology.

[14]  Yanwei Zhao,et al.  Multiobjective Quantum Evolutionary Algorithm for the Vehicle Routing Problem with Customer Satisfaction , 2012 .

[15]  Javad Poshtan,et al.  A modification to classical evolutionary programming by shifting strategy parameters , 2012, Applied Intelligence.

[16]  Yousef Alipouri,et al.  Solving resource-constrained project scheduling problem with evolutionary programming , 2013, J. Oper. Res. Soc..

[17]  S. N. Sivanandam,et al.  Introduction to genetic algorithms , 2007 .

[18]  Xin Yao,et al.  Scaling Up Evolutionary Programming Algorithms , 1998, Evolutionary Programming.

[19]  Thomas Stützle,et al.  Frankenstein's PSO: A Composite Particle Swarm Optimization Algorithm , 2009, IEEE Transactions on Evolutionary Computation.

[20]  Wei Hou,et al.  Evolutionary programming using a mixed mutation strategy , 2007, Inf. Sci..

[21]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  Xin Yao,et al.  Evolutionary programming using mutations based on the Levy probability distribution , 2004, IEEE Transactions on Evolutionary Computation.

[24]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[25]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[26]  David B. Fogel,et al.  Meta-evolutionary programming , 1991, [1991] Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems & Computers.