Nonlinear pyroelectric energy harvesting from relaxor single crystals

Energy harvesting from temperature variations in a Pb(Zn1/3Nb2/3)0.955Ti0.045O3 single crystal was studied and evaluated using the Ericsson thermodynamic cycle. The efficiency of this cycle related to Carnot cycle is 100 times higher than direct pyroelectric energy harvesting, and it can be as high as 5.5% for a 10degC temperature variation and 2 kV/mm electric field. The amount of harvested energy for a 60degC temperature variation and 2 kV/mm electric field is 242.7 mJmiddotcm-3. The influence of ferroelectric phase transitions on the energy harvesting performance is discussed and illustrated with experimental results.

[1]  D. Inman,et al.  A Review of Power Harvesting from Vibration using Piezoelectric Materials , 2004 .

[2]  D. Guyomar,et al.  Toward energy harvesting using active materials and conversion improvement by nonlinear processing , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[3]  Heath Hofmann,et al.  Adaptive piezoelectric energy harvesting circuit for wireless remote power supply , 2002 .

[4]  D. Guyomar,et al.  Pyroelectric energy conversion: Optimization principles , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[5]  M. Stordeur,et al.  Low power thermoelectric generator-self-sufficient energy supply for micro systems , 1997, XVI ICT '97. Proceedings ICT'97. 16th International Conference on Thermoelectrics (Cat. No.97TH8291).

[6]  Mani Srivastava,et al.  Energy-aware wireless microsensor networks , 2002, IEEE Signal Process. Mag..

[7]  M. Thi,et al.  Electric-field-induced orthorhombic phase in Pb[(Zn1∕3Nb2∕3)0.955Ti0.045]O3 single crystals , 2005 .

[8]  Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9 PbMg(1/3)Nb(2/3)O(3)-0.1 PbTiO(3) near room temperature , 2006, cond-mat/0604268.

[9]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[10]  J. D. Childress Application of a Ferroelectric Material in an Energy Conversion Device , 1962 .

[11]  Sébastien Pruvost,et al.  Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic , 2008 .

[12]  D. Guyomar,et al.  Energy harvesting based on FE-FE transition in ferroelectric single crystals , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[13]  Jianguo Zhu,et al.  Electrocaloric properties of (1 − x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 ferroelectric ceramics near room temperature , 1998 .

[14]  C. Randall,et al.  Growth and characterization of Fe-doped Pb(Zn1/3Nb2/3)O3−PbTiO3 single crystals , 2003 .

[15]  Daniel Guyomar,et al.  Toward Heat Energy Harvesting using Pyroelectric Material , 2009 .

[16]  Adrien Badel,et al.  A comparison between several vibration-powered piezoelectric generators for standalone systems , 2006 .

[17]  P. D. Thacher,et al.  Electrocaloric Effects in Some Ferroelectric and Antiferroelectric Pb(Zr, Ti)O3 Compounds , 1968 .

[18]  J. Grindlay,et al.  An Introduction to the Phenomenological Theory of Ferroelectricity: International Series of Monographs In: Natural Philosophy , 1970 .

[19]  L. Lim,et al.  High-homogeneity High-performance flux-grown Pb(Zn1/3Nb2/3)O3–(6–7)%PbTiO3 single crystals , 2004 .

[20]  D. Payne,et al.  The effects of microstructure on the electrocaloric properties of Pb(Zr,Sn,Ti)O3 ceramics , 1981 .

[21]  Jan M. Rabaey,et al.  Improving power output for vibration-based energy scavengers , 2005, IEEE Pervasive Computing.

[22]  D. Guyomar,et al.  Characteristics of Pb[(Zn1/3Nb2/3)0.955Ti0.045]O3 single crystals versus growth method , 2004 .

[23]  S. Alpay,et al.  Influence of mechanical boundary conditions on the electrocaloric properties of ferroelectric thin films , 2008 .

[24]  Heath Hofmann,et al.  Adaptive piezoelectric energy harvesting circuit for wireless, remote power supply , 2001 .

[25]  Thomas R. Shrout,et al.  The Role of Processing Variables in the Flux Growth of Lead Zinc Niobate-Lead Titanate Relaxor Ferroelectric Single Crystals , 1996 .

[26]  Benoit Guiffard,et al.  Electrocaloric and pyroelectric properties of 0.75Pb(Mg1∕3Nb2∕3)O3–0.25PbTiO3 single crystals , 2006 .

[27]  Lia Kouchachvili,et al.  Pyroelectric conversion—Effects of P(VDF–TrFE) preconditioning on power conversion , 2007 .

[28]  D. Guyomar,et al.  Electromechanical properties versus polarization and vibration directions of Pb((Zn1/3Nb2/3)0.955Ti0.045)O3 single crystals grown by the modified Bridgman method , 2007 .

[29]  S. Alpay,et al.  Magnitude of the intrinsic electrocaloric effect in ferroelectric perovskite thin films at high electric fields , 2007 .

[30]  Claude Richard,et al.  Single crystals and nonlinear process for outstanding vibration-powered electrical generators , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[31]  E. W. Jacobs,et al.  Pyroelectric conversion cycle of vinylidene fluoride‐trifluoroethylene copolymer , 1985 .

[32]  H. Kiess,et al.  Theoretical Efficiency of Pyroelectric Power Converters , 1966 .

[33]  S. Pruvost,et al.  Electrocaloric properties of high dielectric constant ferroelectric ceramics , 2007 .

[34]  L. Shebanovs,et al.  Electrocaloric Effect in Some Perovskite Ferroelectric Ceramics and Multilayer Capacitors , 2002 .

[35]  R. B. Olsen,et al.  High efficieincy direct conversion of heat to electrical energy-related pyroelectric measurements , 1982 .

[36]  Ruyan Guo,et al.  Phase transformations in annealed PZN-4.5%PT single crystals , 2008 .

[37]  R. Olsen,et al.  Pyroelectric energy conversion: hysteresis loss and temperature sensitivity of a ferroelectric material , 1983 .