Quantum algorithm for the advection–diffusion equation simulated with the lattice Boltzmann method

[1]  J. Traub,et al.  Quantum algorithm and circuit design solving the Poisson equation , 2012, 1207.2485.

[2]  Maria Schuld,et al.  Supervised Learning with Quantum Computers , 2018 .

[3]  Alán Aspuru-Guzik,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[4]  A. Prakash,et al.  Quantum gradient descent for linear systems and least squares , 2017, Physical Review A.

[5]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[6]  Frank Gaitan,et al.  Finding flows of a Navier–Stokes fluid through quantum computing , 2020, npj Quantum Information.

[7]  Jeffrey Yepez,et al.  Simulation of the diffusion equation on a type-II quantum computer , 2002 .

[8]  J. Yepez TYPE-II QUANTUM COMPUTERS , 2001 .

[9]  L. Lamata,et al.  Quantum algorithm for solving linear differential equations: Theory and experiment , 2018, Physical Review A.

[10]  Jean-Pierre Rivet,et al.  Lattice Gas Hydrodynamics , 1987 .

[11]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[12]  Lixin Fan,et al.  Quantum fast Poisson solver: the algorithm and complete and modular circuit design , 2020, Quantum Inf. Process..

[13]  Andrew M. Childs,et al.  Quantum Algorithm for Linear Differential Equations with Exponentially Improved Dependence on Precision , 2017, Communications in Mathematical Physics.

[14]  J. Yepez,et al.  Quantum lattice-gas model for computational fluid dynamics. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Hua Xiang,et al.  Quantum algorithm for total least squares data fitting , 2019, Physics Letters A.

[16]  J. Yepez,et al.  Measurement-based quantum lattice gas model of fluid dynamics in 2+1 dimensions. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.