Electrochemically Driven Phase Transitions in Insertion Electrodes for Lithium-Ion Batteries: Examples in Lithium Metal Phosphate Olivines

The thermodynamics and kinetics of phase transformations in electrochemical systems are reviewed. Phase transitions in LiMPO4 (M = Fe, Mn, Ni, Co) olivines are highlighted. The phase transformation phenomena in LiMPO4 are diverse and include thermodynamic effects of particle size and applied overpotential, the appearance of metastable phases, and the effects of defects from atomic disorder and aliovalent doping. Such phenomena also include kinetic effects such as interface motion and diffusion of Li-electron complexes. The nature of phase transitions directly influences electrode performance in battery applications. Reduced particle size and doping can reduce or eliminate room-temperature Li miscibility gaps, which in turn affect characteristics of state of charge versus voltage and the elastic energy due to volume mismatches between phases. Near the conditions for a phase transition, Li diffusion coefficients are reduced. Nucleation and growth kinetics produce a series of phase transition sequences, whic...

[1]  C. Montella Apparent diffusion coefficient of intercalated species measured with PITT A simple formulation , 2006 .

[2]  Masao Yonemura,et al.  Room-temperature miscibility gap in LixFePO4 , 2006, Nature materials.

[3]  L. Nazar,et al.  Small polaron hopping in Li(x)FePO4 solid solutions: coupled lithium-ion and electron mobility. , 2006, Journal of the American Chemical Society.

[4]  Z. Suo,et al.  Averting cracks caused by insertion reaction in lithium–ion batteries , 2010 .

[5]  Y. Meng,et al.  First-principles study of surface properties of LiFePO4: Surface energy, structure, Wulff shape, and surface redox potential , 2007 .

[6]  C. Delmas,et al.  Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. , 2008, Nature materials.

[7]  Y. Chiang,et al.  Comparative Study of Lithium Transport Kinetics in Olivine Cathodes for Li-ion Batteries† , 2009 .

[8]  R. M. Cannon,et al.  Nanometer-thick surficial films in oxides as a case of prewetting. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[9]  Atsuo Yamada,et al.  Phase Change in Li x FePO4 , 2005 .

[10]  Doron Aurbach,et al.  Diffusion Coefficients of Lithium Ions during Intercalation into Graphite Derived from the Simultaneous Measurements and Modeling of Electrochemical Impedance and Potentiostatic Intermittent Titration Characteristics of Thin Graphite Electrodes , 1997 .

[11]  Thomas J. Richardson,et al.  Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition , 2006 .

[12]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[13]  Gerbrand Ceder,et al.  Configurational Electronic Entropy and the Phase Diagram of Mixed-Valence Oxides: The Case of Li$_x$FePO$_4$ , 2006 .

[14]  G. A. Parks CHAPTER 4. SURFACE ENERGY AND ADSORPTION AT MINERAL/WATER INTERFACES: AN INTRODUCTION , 1990 .

[15]  Palani Balaya,et al.  Fully Reversible Homogeneous and Heterogeneous Li Storage in RuO2 with High Capacity , 2003 .

[16]  Pedro E. Arce,et al.  Discharge Model for LiFePO4 Accounting for the Solid Solution Range , 2008 .

[17]  A. Yamada,et al.  Experimental visualization of lithium diffusion in LixFePO4. , 2008, Nature materials.

[18]  J. Christian,et al.  The theory of transformations in metals and alloys , 2003 .

[19]  Palani Balaya,et al.  Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique , 2008 .

[20]  Dahn,et al.  Phase diagram of LixC6. , 1991, Physical review. B, Condensed matter.

[21]  Venkat Srinivasan,et al.  Discharge Model for the Lithium Iron-Phosphate Electrode , 2004 .

[22]  Linda F Nazar,et al.  Proof of intercrystallite ionic transport in LiMPO(4) electrodes (M = Fe, Mn). , 2009, Journal of the American Chemical Society.

[23]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[24]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[25]  R. M. Cannon,et al.  Grain boundary transitions in binary alloys. , 2006, Physical review letters.

[26]  D. Aurbach,et al.  Spatially limited diffusion coupled with ohmic potential drop and/or slow interfacial exchange: a new method to determine the diffusion time constant and external resistance from potential step (PITT) experiments , 2004 .

[27]  Xiaodong Wu,et al.  Cracking causing cyclic instability of LiFePO4 cathode material , 2005 .

[28]  Tsutomu Ohzuku,et al.  Formation of Lithium‐Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell , 1993 .

[29]  D. Aurbach,et al.  Electrochemically driven first-order phase transitions caused by elastic responses of ion-insertion electrodes under external kinetic control , 2008 .

[30]  W. Carter,et al.  Relating atomistic grain boundary simulation results to the phase-field model , 2002 .

[31]  Anton Van der Ven,et al.  Phase transformations and volume changes in spinel LixMn2O4 , 2000 .

[32]  M. Doeff,et al.  TEM Study of Fracturing in Spherical and Plate-like LiFePO4 Particles , 2008 .

[33]  Montse Casas-Cabanas,et al.  Room-temperature single-phase Li insertion/extraction in nanoscale Li(x)FePO4. , 2008, Nature materials.

[34]  Jian Luo,et al.  Surface adsorption and disordering in LiFePO4 based battery cathodes , 2009 .

[35]  Yet-Ming Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[36]  Palani Balaya,et al.  Anisotropy of Electronic and Ionic Transport in LiFePO4 Single Crystals , 2007 .

[37]  Brian M. Tissue,et al.  Energy Crossovers in Nanocrystalline Zirconia , 2004 .

[38]  Robert W. Balluffi,et al.  Kinetics Of Materials , 2005 .

[39]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[40]  Masaya Takahashi,et al.  Reaction behavior of LiFePO 4 as a cathode material for rechargeable lithium batteries , 2002 .

[41]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[42]  D. Aurbach,et al.  Comparison between Cottrell diffusion and moving boundary models for determination of the chemical diffusion coefficients in ion-insertion electrodes , 2005 .

[43]  Nathalie Pereira,et al.  Carbon-Metal Fluoride Nanocomposites Structure and Electrochemistry of FeF3: C , 2003 .

[44]  W. Carter,et al.  A continuum model of grain boundaries , 2000 .

[45]  W. Craig Carter,et al.  Diffuse interface model for structural transitions of grain boundaries , 2006 .

[46]  R. M. Cannon,et al.  A diffuse interface model of interfaces: Grain boundaries in silicon nitride , 2005 .

[47]  J. L. Dodd,et al.  Phase Diagram of Li x FePO4 , 2006 .

[48]  J. Taylor,et al.  II—mean curvature and weighted mean curvature , 1992 .

[49]  Yet-Ming Chiang,et al.  Aliovalent Substitutions in Olivine Lithium Iron Phosphate and Impact on Structure and Properties , 2009 .

[50]  Robert W. Balluffi,et al.  Kinetics of Materials: Balluffi/Kinetics , 2005 .

[51]  Ming Tang,et al.  Model for the Particle Size, Overpotential, and Strain Dependence of Phase Transition Pathways in Storage Electrodes: Application to Nanoscale Olivines , 2009 .

[52]  G. Ceder,et al.  Ab Initio Study of the Surface Properties and Nanoscale Effects of LiMnPO4 , 2008 .

[53]  Hsiao-Ying Shadow Huang,et al.  Strain Accommodation during Phase Transformations in Olivine‐Based Cathodes as a Materials Selection Criterion for High‐Power Rechargeable Batteries , 2007 .

[54]  Gerbrand Ceder,et al.  First-principles investigation of phase stability in Li x CoO 2 , 1998 .

[55]  W. Sigle,et al.  Delithiation Study of LiFePO4 Crystals Using Electron Energy-Loss Spectroscopy , 2009 .

[56]  W. Carter,et al.  Extending Phase Field Models of Solidification to Polycrystalline Materials , 2003 .

[57]  G. Ceder,et al.  Elastic properties of olivine LixFePO4 from first principles , 2006 .

[58]  Y. Chiang,et al.  Existence and stability of nanometer-thick disordered films on oxide surfaces , 2000 .

[59]  Pedro E. Arce,et al.  A Discharge Model for Phase Transformation Electrodes: Formulation, Experimental Validation, and Analysis , 2007 .

[60]  R. M. Cannon,et al.  Grain boundary order-disorder transitions , 2006 .

[61]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[62]  Peter R. Slater,et al.  Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-Type Battery Material , 2005 .

[63]  Joachim Maier,et al.  Reversible Formation and Decomposition of LiF Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries , 2003 .

[64]  C. Fisher,et al.  Surface structures and crystal morphologies of LiFePO4: relevance to electrochemical behaviour , 2008 .

[65]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[66]  Craig A. J. Fisher,et al.  Lithium Battery Materials LiMPO4 (M = Mn, Fe, Co, and Ni): Insights into Defect Association, Transport Mechanisms, and Doping Behavior , 2008 .

[67]  Young-Il Jang,et al.  Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage , 2003 .

[68]  Jeff Wolfenstine,et al.  Kinetic Study of the Electrochemical FePO 4 to LiFePO 4 Phase Transition , 2007 .

[69]  Charles Delacourt,et al.  Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy , 2006 .

[70]  Liquan Chen,et al.  First-principles study of Li ion diffusion in LiFePO4 , 2004 .

[71]  Yoji Sakurai,et al.  Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries , 2002 .

[72]  J. Dahn,et al.  Short-range Sn ordering and crystal structure of Li4.4Sn prepared by ambient temperature electrochemical methods , 1998 .

[73]  W. Craig Carter,et al.  Overpotential-Dependent Phase Transformation Pathways in Lithium Iron Phosphate Battery Electrodes , 2010 .

[74]  M. Wagemaker,et al.  Large impact of particle size on insertion reactions. A case for anatase Li(x)TiO2. , 2007, Journal of the American Chemical Society.

[75]  Jian Luo,et al.  Stabilization of Nanoscale Quasi-Liquid Interfacial Films in Inorganic Materials: A Review and Critical Assessment , 2007 .

[76]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[77]  Martin Z. Bazant,et al.  Intercalation dynamics in rechargeable battery materials : General theory and phase-transformation waves in LiFePO4 , 2008 .

[78]  Bruno Scrosati,et al.  Modern batteries : an introduction to electrochemical power sources , 2003 .

[79]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-silicon system. [415/sup 0/C] , 1981 .

[80]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[81]  Chengtian Lin,et al.  Floating zone growth of lithium iron (II) phosphate single crystals , 2005 .

[82]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-tin system , 1980 .

[83]  Jean-Marie Tarascon,et al.  The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1 , 2005 .

[84]  Rahul Malik,et al.  Phase diagram and electrochemical properties of mixed olivines from first-principles calculations , 2009 .

[85]  Gerbrand Ceder,et al.  Ab initio study of the migration of small polarons in olivine Li x FePO 4 and their association with lithium ions and vacancies , 2006 .

[86]  W. Craig Carter,et al.  Size-Dependent Lithium Miscibility Gap in Nanoscale Li1 − x FePO4 , 2007 .

[87]  M. Whittingham,et al.  Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries , 2005 .

[88]  W. Craig Carter,et al.  Electrochemically Induced Phase Transformation in Nanoscale Olivines Li1−xMPO4 (M = Fe, Mn) , 2008 .

[89]  Yet-Ming Chiang,et al.  Wetting and Prewetting on Ceramic Surfaces , 2008 .