Cell proliferative properties of Forcespinning® nopal composite nanofibers

In this study, Forcespinning® was used to produce nanofibers composed of Opuntia cochenillifera, “nopal,” mucilage (N) extract, chitosan (CH), and pullulan (PL) (N/CH/PL). These nopal-incorporating nanofibers were examined for their ability to sustain adhesion and proliferation of mouse embryonic fibroblast (NIH 3T3) cells. After a 6-day incubation period, N/CH/PL nanofibers displayed robust cell proliferation, with continued cell growth after an extended incubation period of 14 days. These results demonstrate that natural bioactive compounds can be combined with biodegradable polymers to provide an enhanced environment for cell growth, suggesting potential natural active ingredients as alternatives in wound dressings.

[1]  Raul Barbosa,et al.  Aloe Vera extract-based composite nanofibers for wound dressing applications. , 2021, Materials science & engineering. C, Materials for biological applications.

[2]  C. Hernández-Carrillo,et al.  Evaluation of specified and manufactured Colombian commercial cements by performance , 2021 .

[3]  K. Lozano,et al.  Fabrication of Forcespinning® nanofibers incorporating nopal extract , 2020, Polymer International.

[4]  L. Argueta-Figueroa,et al.  UV-initiated crosslinking of electrospun chitosan/poly(ethylene oxide) nanofibers doped with ZnO-nanoparticles: development of antibacterial nanofibrous hydrogel , 2020, MRS communications.

[5]  J. Erben,et al.  Impact of Various Sterilization and Disinfection Techniques on Electrospun Poly-ε-caprolactone , 2020, ACS omega.

[6]  D. Little,et al.  Synthetic scaffolds for musculoskeletal tissue engineering: cellular responses to fiber parameters , 2019, npj Regenerative Medicine.

[7]  K. Lozano,et al.  Forcespinning technique for the production of poly( d , l ‐lactic acid) submicrometer fibers: Process–morphology–properties relationship , 2019, Journal of Applied Polymer Science.

[8]  L. De Bellis,et al.  Antimicrobial and Antibiofilm Activity against Staphylococcus aureus of Opuntia ficus-indica (L.) Mill. Cladode Polyphenolic Extracts , 2019, Antioxidants.

[9]  J. Tolar,et al.  Ternary Composite Nanofibers Containing Chondroitin Sulfate Scavenge Inflammatory Chemokines from Solution and Prohibit Squamous Cell Carcinoma Migration. , 2019, ACS applied bio materials.

[10]  M. Ventre,et al.  Spatio-Temporal Control of Cell Adhesion: Toward Programmable Platforms to Manipulate Cell Functions and Fate , 2018, Front. Bioeng. Biotechnol..

[11]  J. Álvarez-Ramírez,et al.  Effect of nopal mucilage addition on physical, barrier and mechanical properties of citric pectin-based films , 2018, Journal of Food Science and Technology.

[12]  K. Lozano,et al.  Texas Sour Orange Juice Used in Scaffolds for Tissue Engineering , 2018, Membranes.

[13]  K. Lozano,et al.  Development of antimicrobial chitosan based nanofiber dressings for wound healing applications , 2018 .

[14]  J. Gómez-Cuaspud,et al.  Compositional, thermal and microstructural characterization of the Nopal (opuntia ficus indica), for addition in commercial cement mixtures , 2017 .

[15]  V. Baeten,et al.  Phenolic compound explorer: A mid-infrared spectroscopy database , 2017 .

[16]  Mariel Monrroy,et al.  Extraction and Physicochemical Characterization of Mucilage from Opuntia cochenillifera (L.) Miller , 2017 .

[17]  Sylvia Thomas,et al.  System integration of functionalized natural materials , 2017 .

[18]  A. Nègre-Salvayre,et al.  Opuntia spp.: Characterization and Benefits in Chronic Diseases , 2017, Oxidative medicine and cellular longevity.

[19]  R. Kammoun,et al.  Extraction and characterization of three polysaccharides extracted from Opuntia ficus indica cladodes. , 2016, International journal of biological macromolecules.

[20]  M. Ondarza Cactus Mucilages : Nutritional, Health Benefits and Clinical Trials , 2016 .

[21]  L. Majure,et al.  Phylogenetic relationships and morphological evolution in Opuntia s . str . and closely related members of tribe Opuntieae , 2016 .

[22]  C. Park,et al.  Fabrication and characterization of electrospun zein/Ag nanocomposite mats for wound dressing applications. , 2015, International journal of biological macromolecules.

[23]  K. Lozano,et al.  Development of tannic acid/chitosan/pullulan composite nanofibers from aqueous solution for potential applications as wound dressing. , 2015, Carbohydrate polymers.

[24]  Pankaj Gupta Carotenoids of Therapeutic Significance from Marigold , 2014 .

[25]  G. Lizard,et al.  Nopal Cactus (Opuntia ficus-indica) as a Source of Bioactive Compounds for Nutrition, Health and Disease , 2014, Molecules.

[26]  M. G. Garnica-Romo,et al.  Extraction and Characterization of Mucilage From Wild Species of Opuntia , 2014 .

[27]  A. Fuentes,et al.  Experimental study of nanofiber production through forcespinning , 2013 .

[28]  A. L. Padilla-Velasco,et al.  Nopal Cactus (Opuntia Ficus-Indica) as a Holographic Material , 2012, Materials.

[29]  M. Sun,et al.  Wound healing effects of cactus extracts on second degree superficial burned mice , 2011 .

[30]  V. Lobo,et al.  Free radicals, antioxidants and functional foods: Impact on human health , 2010, Pharmacognosy reviews.

[31]  L. DiPietro,et al.  Factors Affecting Wound Healing , 2010, Journal of dental research.

[32]  C. Sáenz,et al.  Extraction and characterization of mucilage in Opuntia spp , 2007 .

[33]  R. Carle,et al.  Cactus stems (Opuntia spp.): a review on their chemistry, technology, and uses. , 2005, Molecular nutrition & food research.

[34]  L. Bačáková,et al.  Cell adhesion on artificial materials for tissue engineering. , 2004, Physiological research.

[35]  P. Doetsch,et al.  Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. , 2004, Nucleic acids research.

[36]  Jeong-Chae Lee,et al.  Antioxidant property of an ethanol extract of the stem of Opuntia ficus-indica var. saboten. , 2002, Journal of agricultural and food chemistry.

[37]  P. Nobel,et al.  Cacti : biology and uses , 2002 .