The “Quasidirect” Radiative Recombination of Free Holes at Neutral Shallow Donors in GaP

The luminescence band at 2.24 eV in n-type GaP is investigated in the temperature range of T = 27 to 120 K. It consists of a no-phonon line and several phonon replicas (TAX, LAX, TOX), which overlap with the donor–acceptor pair band. According to the analysis of the line shape and the energetic position of the intensity maximum in dependence of the temperature, the excitation intensity, and the time after excitation this band can be interpreted as being caused by free (hole)-to-bound (electron bound at the sulfur donor) transition. Taking into account the consequences of the GaP band structure on the symmetry properties of the bound electron states the free-to-bound transition is described as ‘quasidirect’. The calculated line shape is in good agreement with experiment using an indirect gap value which is 11 meV higher than accepted hitherto. The obtained indirect gap energy and free exciton binding energy are determined to Eg(T = 4.2 K) = (2.350 ± 0.002) eV and EFE = (22 ± 2) meV, respectively. In n-GaP wird die Lumineszenzbande bei 2, 24 eV im Temperaturbereich von T = 27, bis 120 K untersucht. Die Bande besteht aus einer Nullphononenlinie und ihren Phononensatelliten (TAX, LAX, TOX), die sich mit der Donator–Akzeptor-Paar-Bande uberlagern. Durch die Analyse der Linienform und der energetischen Lage des Intensitatsmaximums in Abhangigkeit von der Temperatur, der Anregungsintensitat und der Zeit nach der Anregung, kann diese Bande als ein free (Loch)-to-bound (Elektron am Donator Schwefel)-Ubergang interpretiert werden. Unter Berucksichtigung der Bandstrukturbesonderheiten von GaP und den daraus folgenden Konse-quenzen fur die Symmetrie des Elektronenzustandes am Donator, kann der free-to-bound-Uber-gang als ‚quasidirekt’ betrachtet werden. Unter Verwendung einer um 11 meV hoheren Energie-lucke als bisher angenommen wurde, ist die errechnete Linienform in guter Ubereinstimmung mit dem Experiment. Die indirekte Gapenergie und die Bindungsenergie des freien Exzitons ergeben sich zu Eg(T = 4,2 K) = (2,350 ± 0,002) eV bzw. EFE = (22 ± 2) meV.

[1]  H. Kreher,et al.  Observation of nonexponential long time decay of donor‐acceptor pair luminescence in GaP , 1976 .

[2]  W. Bludau,et al.  Lineshape analysis of free-electron to bound-hole transitions in electric fields , 1975 .

[3]  H. Capellmann The influence of band degeneracy and hybridization on correlations in narrow bands , 1975 .

[4]  W. Anderson Shallow impurity states in semiconductors: Absorption cross-sections, excitation rates, and capture cross-sections☆ , 1975 .

[5]  R. Bindemann,et al.  On the Spectral Intensity Distribution of Donor–Acceptor Pair Recombination in GaP , 1974 .

[6]  J. Bye,et al.  The dielectric constant of GaP from a refined analysis of donor-acceptor pair luminescence, and the deviation of the pair energy from the coulomb law , 1973 .

[7]  K. Kreher,et al.  Two‐step excitation of photoluminescence in GaP , 1973 .

[8]  N. O. Lipari,et al.  Spherical Model of Shallow Acceptor States in Semiconductors , 1973 .

[9]  A. Nakamura,et al.  Photoconductivity Associated with Auger Recombination of Excitons Bound to Neutral Donors in Te-Doped Gallium Phosphide , 1973 .

[10]  F. J. Bryant,et al.  Electron temperatures deduced from comparative studies of photo- and cathodoexcitation of free-to-bound emission , 1972 .

[11]  R. Taylor,et al.  Spectroscopic Study of Tellurium Donors in GaP , 1970 .

[12]  A. J. Bosman,et al.  Low temperature luminescence in GaP at very low excitation densities , 1969 .

[13]  A. Onton Optical Absorption Due to Excitation of Electrons Bound to Si and S in GaP , 1969 .

[14]  T. N. Morgan,et al.  Pair Spectra Involving Si Donors in GaP , 1969 .

[15]  T. N. Morgan Symmetry of Electron States in GaP , 1968 .

[16]  J. S. Blakemore Radiative Capture by Impurities in Semiconductors , 1967 .

[17]  P. J. Dean Absorption and Luminescence of Excitons at Neutral Donors in Gallium Phosphide , 1967 .

[18]  D. G. Thomas,et al.  Intrinsic Absorption-Edge Spectrum of Gallium Phosphide , 1966 .

[19]  D. M. Eagles Optical absorption and recombination radiation in semiconductors due to transitions between hydrogen-like acceptor impurity levels and the conduction band , 1960 .

[20]  M. Sturge,et al.  A new interimpurity recombination in GaP; revised values for acceptor binding energies , 1978 .

[21]  E. W. Williams,et al.  Chapter 5 Photoluminescence II: Gallium Arsenide , 1972 .

[22]  A. A. Bergh,et al.  Light-emitting diodes , 1972 .

[23]  H. C. Casey,et al.  Temperature Dependence of the Energy Gap in GaAs and GaP , 1969 .

[24]  D. G. Thomas,et al.  FLUORESCENT DECAY TIMES OF EXCITONS BOUND TO ISOELECTRONIC TRAPS IN GaP AND ZnTe. , 1967 .