Burst intensification by singularity emitting radiation in multi-stream flows

Burst Intensification by Singularity Emitting Radiation (BISER) is proposed. Singularities in multi-stream flows of emitting media cause constructive interference of emitted travelling waves, forming extremely localized sources of bright coherent emission. Here we for the first time demonstrate this extreme localization of BISER by direct observation of nano-scale coherent x-ray sources in a laser plasma. The energy emitted into the spectral range from 60 to 100 eV is up to ~100 nJ, corresponding to ~1010 photons. Simulations reveal that these sources emit trains of attosecond x-ray pulses. Our findings establish a new class of bright laboratory sources of electromagnetic radiation. Furthermore, being applicable to travelling waves of any nature (e.g. electromagnetic, gravitational or acoustic), BISER provides a novel framework for creating new emitters and for interpreting observations in many fields of science.

[1]  A. Litvak FINITE AMPLITUDE WAVE BEAMS IN A MAGNETO-ACTIVE PLASMA. , 1969 .

[2]  Raphael Kastner,et al.  Hybrid Ray-FDTD Moving Window Approach to Pulse Propagation , 1997 .

[3]  A. Einstein On the Electrodynamics of Moving Bodies , 2005 .

[4]  E. Takahashi,et al.  Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses , 2013, Nature Communications.

[5]  G. A. Askaryan,et al.  EFFECT OF THE GRADIENT OF A STRONG ELECTROMAGNETIC RAY ON ELECTRONS AND ATOMS , 1962 .

[6]  Antoine Rousse,et al.  Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction. , 2004, Physical review letters.

[7]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[8]  A. Einstein Zur Elektrodynamik bewegter Körper , 1905 .

[9]  G. Golup,et al.  Gamma Ray Bursts , 2008 .

[10]  G. Lambert,et al.  Femtosecond x rays from laser-plasma accelerators , 2013, 1301.5066.

[11]  T. Tajima,et al.  Laser Electron Accelerator , 1979 .

[12]  V Malka,et al.  X-ray radiation from nonlinear Thomson scattering of an intense femtosecond laser on relativistic electrons in a helium plasma. , 2003, Physical review letters.

[13]  Takashi Kameshima,et al.  High order harmonics from relativistic electron spikes , 2014 .

[14]  D. Fargion,et al.  On gravitational radiation emitted by circulating particles in high energy accelerators , 1987 .

[15]  M Kando,et al.  Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield. , 2007, Physical review letters.

[16]  V. I. Luchin,et al.  Multilayer thin-film filters of extreme ultraviolet and soft X-ray spectral regions , 2010 .

[17]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[18]  John M. Dawson,et al.  Nonlinear Electron Oscillations in a Cold Plasma , 1959 .

[19]  S. V. Bulanov,et al.  Optics in the relativistic regime , 2006 .

[20]  T. Esirkepov,et al.  Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor , 2001 .

[21]  S. V. Bulanov,et al.  Submicrometer-resolution in situ imaging of the focus pattern of a soft x-ray laser by color center formation in LiF crystal. , 2009, Optics letters.

[22]  H. Schnopper,et al.  Diffraction grating transmission efficiencies for XUV and soft x rays. , 1977, Applied optics.

[23]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[24]  R. P. Drake,et al.  Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves , 2012, Nature.

[25]  A. Akhiezer,et al.  THEORY OF WAVE MOTION OF AN ELECTRON PLASMA , 1956 .

[26]  Esarey,et al.  Nonlinear Thomson scattering of intense laser pulses from beams and plasmas. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  A. Faenov,et al.  Gas-cluster targets for femtosecond laser interaction: Modeling and optimization , 2006 .

[28]  C Cornaggia,et al.  Single-shot, high-dynamic-range measurement of sub-15 fs pulses by self-referenced spectral interferometry. , 2010, Optics letters.

[29]  Charles K. Rhodes,et al.  Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases , 1987 .

[30]  M. Kishimoto,et al.  Approaching the diffraction-limited, bandwidth-limited Petawatt. , 2017, Optics express.

[31]  Hideaki Takabe,et al.  Modeling astrophysical phenomena in the laboratory with intense lasers , 1999 .

[32]  T. Imazono,et al.  Soft-x-ray harmonic comb from relativistic electron spikes , 2012 .

[33]  S. V. Bulanov,et al.  Bow wave from ultraintense electromagnetic pulses in plasmas. , 2008, Physical review letters.

[34]  Ibrahim Dincer,et al.  Modeling and Optimization , 2017 .

[35]  B. L. Henke,et al.  X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92 , 1993 .

[36]  Nrl,et al.  A repeating fast radio burst , 2016, Nature.

[37]  Vladimir Chvykov,et al.  Generation of GeV protons from 1 PW laser interaction with near critical density targets. , 2009, Physics of plasmas.

[38]  O. Hagena Cluster ion sources (invited) , 1992 .

[39]  C. Geddes,et al.  Observation of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary. , 2003, Physical review letters.

[40]  F. Krausz Attosecond Physics , 2007, 2007 Conference on Lasers and Electro-Optics - Pacific Rim.

[41]  A. Einstein,et al.  On gravitational waves , 1937 .

[42]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[43]  R. P. Drake,et al.  Self-organized electromagnetic field structures in laser-produced counter-streaming plasmas , 2012, Nature Physics.

[44]  K. Zhao,et al.  Tailoring a 67 attosecond pulse through advantageous phase-mismatch. , 2012, Optics letters.

[45]  E. Esarey,et al.  Synchrotron radiation from electron beams in plasma-focusing channels. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  S. V. Bulanov,et al.  Transverse-Wake Wave Breaking , 1997 .

[47]  A. Pirozhkov,et al.  Aperiodic multilayer structures in soft X-ray optics , 2015 .

[48]  S. A. Pikuz,et al.  Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field , 2014, Science.

[49]  Ryszard S. Romaniuk,et al.  Operation of a free-electron laser from the extreme ultraviolet to the water window , 2007 .

[50]  Noriaki Miyanaga,et al.  Temporal contrast enhancement of petawatt-class laser pulses. , 2012, Optics letters.

[51]  S. V. Bulanov,et al.  Small-scale electron density and magnetic-field structures in the wake of an ultraintense laser pulse. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[52]  P. Corkum,et al.  Plasma perspective on strong field multiphoton ionization. , 1993, Physical review letters.

[53]  V. Popov,et al.  REVIEWS OF TOPICAL PROBLEMS: Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory) , 2004 .

[54]  Edward Ott,et al.  Self‐focusing of short intense pulses in plasmas , 1987 .

[55]  S. V. Bulanov,et al.  Soft-x-ray harmonic comb from relativistic electron spikes. , 2010, Physical review letters.

[56]  G. Kalintchenko,et al.  Snapshots of laser wakefields , 2006 .

[57]  A. I. Nikishov,et al.  Gravitational radiation of systems and the role of their force field , 2010 .

[58]  S. V. Bulanov,et al.  Fundamental Physics and Relativistic Laboratory Astrophysics with Extreme Power Lasers , 2012, 1202.4552.

[59]  M. Murnane,et al.  Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers , 2012, Science.

[60]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .