Square of a Hamilton cycle in a random graph

We show that $p=\sqrt{\frac{e}{n}}$ is a sharp threshold for the random graph $G_{n,p}$ to contain the square of a Hamilton cycle. This improves the previous results of Kuhn and Osthus and also Nenadov and Skoric.

[1]  Endre Szemerédi,et al.  Proof of the Seymour conjecture for large graphs , 1998 .

[2]  J. Komlos,et al.  First Occurrence of Hamilton Cycles in Random Graphs , 1985 .

[3]  A. RÉNY,et al.  ON THE EXISTENCE OF A FACTOR OF DEGREE ONE OF A CONNECTED RANDOM GRAPH , 2004 .

[4]  C. McDiarmid Clutter percolation and random graphs , 1980 .

[5]  R. Nenadov,et al.  Powers of cycles in random graphs and hypergraphs , 2017 .

[6]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[7]  Andrzej Dudek,et al.  Embedding the Erdős-Rényi hypergraph into the random regular hypergraph and Hamiltonicity , 2015, J. Comb. Theory, Ser. B.

[8]  A. Frieze,et al.  Introduction to Random Graphs , 2016 .

[9]  Alan M. Frieze,et al.  Perfect matchings in random graphs with prescribed minimal degree , 2003, SODA '03.

[10]  R. Paley,et al.  A note on analytic functions in the unit circle , 1932, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  Daniela Kühn,et al.  On Pósa's Conjecture for Random Graphs , 2012, SIAM J. Discret. Math..

[12]  L. Pósa,et al.  Hamiltonian circuits in random graphs , 1976, Discret. Math..

[13]  Oliver Riordan,et al.  Spanning Subgraphs of Random Graphs , 2000, Combinatorics, Probability and Computing.

[14]  R. W. Hofstad,et al.  Percolation and random graphs , 2009 .

[15]  Tom Bohman,et al.  How many random edges make a dense graph hamiltonian? , 2003, Random Struct. Algorithms.