The network geometry strongly influences the performance of the distributed system, i.e., the coverage capability, measurement accuracy and overall cost. Therefore the network placement optimization represents an urgent issue in the distributed measurement, even in large-scale metrology. This paper presents an effective computer-assisted network placement optimization procedure for the large-scale distributed system and illustrates it with the example of the multi-tracker system. To get an optimal placement, the coverage capability and the coordinate uncertainty of the network are quantified. Then a placement optimization objective function is developed in terms of coverage capabilities, measurement accuracy and overall cost. And a novel grid-based encoding approach for Genetic algorithm is proposed. So the network placement is optimized by a global rough search and a local detailed search. Its obvious advantage is that there is no need for a specific initial placement. At last, a specific application illustrates this placement optimization procedure can simulate the measurement results of a specific network and design the optimal placement efficiently.
[1]
O. Faugeras.
Three-dimensional computer vision: a geometric viewpoint
,
1993
.
[2]
Fiorenzo Franceschini,et al.
Distributed Large-Scale Dimensional Metrology
,
2011
.
[3]
Paul G. Maropoulos,et al.
Laser tracker position optimization
,
2014
.
[4]
David E. Goldberg,et al.
Genetic Algorithms in Search Optimization and Machine Learning
,
1988
.
[5]
John H. Holland,et al.
Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
,
1992
.
[6]
Barbara Pralio,et al.
Optimal sensor positioning for large scale metrology applications
,
2010
.
[7]
Christos G. Cassandras,et al.
Sensor Networks and Cooperative Control
,
2005,
CDC 2005.
[8]
Tomas Akenine-Möller,et al.
Fast, Minimum Storage Ray-Triangle Intersection
,
1997,
J. Graphics, GPU, & Game Tools.