The Johns Hopkins University multimodal dataset for human action recognition

The Johns Hopkins University MultiModal Action (JHUMMA) dataset contains a set of twenty-one actions recorded with four sensor systems in three different modalities. The data was collected with a data acquisition system that includes three independent active sonar devices at three different frequencies and a Microsoft Kinect sensor that provides both RGB and Depth data. We have developed algorithms for human action recognition from active acoustics and provide benchmark baseline recognition performance results.

[1]  Gerhard Neuweiler How bats detect flying insects , 1980 .

[2]  Sue L. Denham,et al.  Human Action Categorization Using Ultrasound Micro-Doppler Signatures , 2011, HBU.

[3]  Ronen Basri,et al.  Actions as space-time shapes , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[4]  Alessio Balleri,et al.  Classification of personnel targets by acoustic micro-Doppler signatures , 2011 .

[5]  G. Yahav,et al.  3D Imaging Camera for Gaming Application , 2007, 2007 Digest of Technical Papers International Conference on Consumer Electronics.

[6]  Mubarak Shah,et al.  UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild , 2012, ArXiv.

[7]  Thomas Wennekers,et al.  Gait-based person and gender recognition using micro-doppler signatures , 2011, 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[8]  Bhiksha Raj,et al.  Acoustic Doppler sonar for gait recogination , 2007, 2007 IEEE Conference on Advanced Video and Signal Based Surveillance.

[9]  J. Sabatier,et al.  A Review of Human Signatures in Urban Environments Using Seismic and Acoustic Methods , 2008, 2008 IEEE Conference on Technologies for Homeland Security.

[10]  Carmine Clemente,et al.  'The Micro-Doppler Effect in Radar' by V.C. Chen , 2012 .

[11]  Astronomie Physik Über das farbige Licht der Doppelsterne , 2006 .

[12]  Andrew W. Fitzgibbon,et al.  Real-time human pose recognition in parts from single depth images , 2011, CVPR 2011.

[13]  A. Waxman,et al.  Acoustic micro-Doppler radar for human gait imaging. , 2007, The Journal of the Acoustical Society of America.

[14]  Andreas G. Andreou,et al.  Acoustic micro-Doppler signal processing with foveated electronic cochlea , 2015 .

[15]  Andrew S. Cassidy,et al.  A wireless architecture for distributed sensing/actuation and pre-processing with microsecond synchronization , 2011, 2011 45th Annual Conference on Information Sciences and Systems.

[16]  H. Wechsler,et al.  Micro-Doppler effect in radar: phenomenon, model, and simulation study , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[17]  C. Schmid,et al.  Actions in context , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Cordelia Schmid,et al.  Learning realistic human actions from movies , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Thomas Serre,et al.  HMDB: A large video database for human motion recognition , 2011, 2011 International Conference on Computer Vision.

[20]  B. Caputo,et al.  Recognizing human actions: a local SVM approach , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[21]  V. Bruns,et al.  Cochlear innervation in the greater horseshoe bat: demonstration of an acoustic fovea , 1980, Hearing Research.

[22]  Christophe Garcia,et al.  Human activities dataset and the ICPR 2012 human activities recognition and localization competition , 2012 .

[23]  Buijs Ballot Akustische Versuche auf der Niederländischen Eisenbahn, nebst gelegentlichen Bemerkungen zur Theorie des Hrn. Prof. Doppler , 1845 .

[24]  Mubarak Shah,et al.  Recognizing 50 human action categories of web videos , 2012, Machine Vision and Applications.

[25]  Allen M. Waxman,et al.  Acoustic Micro-Doppler Gait Signatures of Humans and Animals , 2007, 2007 41st Annual Conference on Information Sciences and Systems.

[26]  Nathan Silberman,et al.  Indoor scene segmentation using a structured light sensor , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[27]  Zhaonian Zhang,et al.  Human identification experiments using acoustic micro-Doppler signatures , 2008, 2008 Argentine School of Micro-Nanoelectronics, Technology and Applications.

[28]  Andreas G. Andreou,et al.  Multimodal Integration of Micro-Doppler Sonar and auditory signals for Behavior Classification with convolutional Networks , 2013, Int. J. Neural Syst..

[29]  Andrew S. Cassidy,et al.  A multimodal-corpus data collection system for cognitive acoustic scene analysis , 2011, 2011 45th Annual Conference on Information Sciences and Systems.

[30]  J. Georgiou,et al.  Individual classification through autoregressive modelling of micro-doppler signatures , 2012, 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS).