Fault-Tolerant Additive Weighted Geometric Spanners

Let S be a set of n points and let w be a function that assigns non-negative weights to points in S. The additive weighted distance d_w(p, q) between two points p,q belonging to S is defined as w(p) + d(p, q) + w(q) if p \ne q and it is zero if p = q. Here, d(p, q) denotes the (geodesic) Euclidean distance between p and q. A graph G(S, E) is called a t-spanner for the additive weighted set S of points if for any two points p and q in S the distance between p and q in graph G is at most t.d_w(p, q) for a real number t > 1. Here, d_w(p,q) is the additive weighted distance between p and q. For some integer k \geq 1, a t-spanner G for the set S is a (k, t)-vertex fault-tolerant additive weighted spanner, denoted with (k, t)-VFTAWS, if for any set S' \subset S with cardinality at most k, the graph G \ S' is a t-spanner for the points in S \ S'. For any given real number \epsilon > 0, we obtain the following results: - When the points in S belong to Euclidean space R^d, an algorithm to compute a (k,(2 + \epsilon))-VFTAWS with O(kn) edges for the metric space (S, d_w). Here, for any two points p, q \in S, d(p, q) is the Euclidean distance between p and q in R^d. - When the points in S belong to a simple polygon P, for the metric space (S, d_w), one algorithm to compute a geodesic (k, (2 + \epsilon))-VFTAWS with O(\frac{k n}{\epsilon^{2}}\lg{n}) edges and another algorithm to compute a geodesic (k, (\sqrt{10} + \epsilon))-VFTAWS with O(kn(\lg{n})^2) edges. Here, for any two points p, q \in S, d(p, q) is the geodesic Euclidean distance along the shortest path between p and q in P. - When the points in $S$ lie on a terrain T, an algorithm to compute a geodesic (k, (2 + \epsilon))-VFTAWS with O(\frac{k n}{\epsilon^{2}}\lg{n}) edges.

[1]  Esther M. Arkin,et al.  Shortest path to a segment and quickest visibility queries , 2015, J. Comput. Geom..

[2]  Joachim Gudmundsson,et al.  Geometric Spanners for Weighted Point Sets , 2010, Algorithmica.

[3]  Michiel H. M. Smid,et al.  Efficient construction of a bounded-degree spanner with low weight , 2006, Algorithmica.

[4]  Kunal Talwar,et al.  Bypassing the embedding: algorithms for low dimensional metrics , 2004, STOC '04.

[5]  Michiel H. M. Smid,et al.  Delaunay and diamond Triangulations contain Spanners of Bounded Degree , 2009, Int. J. Comput. Geom. Appl..

[6]  Mohammad Ali Abam,et al.  Geometric Spanners for Points Inside a Polygonal Domain , 2015, Symposium on Computational Geometry.

[7]  Prosenjit Bose,et al.  On Plane Constrained Bounded-Degree Spanners , 2012, LATIN.

[8]  Joachim Gudmundsson,et al.  Region-Fault Tolerant Geometric Spanners , 2007, SODA '07.

[9]  Michiel H. M. Smid,et al.  Dynamic algorithms for geometric spanners of small diameter: Randomized solutions , 1999, Comput. Geom..

[10]  Carl Gutwin,et al.  The Delauney Triangulation Closely Approximates the Complete Euclidean Graph , 1989, WADS.

[11]  Mark de Berg,et al.  Geodesic Spanners for Points on a Polyhedral Terrain , 2019, SIAM J. Comput..

[12]  Mark de Berg,et al.  Kinetic spanners in Rd , 2009, SCG '09.

[13]  Paz Carmi,et al.  An optimal algorithm for computing angle-constrained spanners , 2012, J. Comput. Geom..

[14]  Paz Carmi,et al.  Stable roommates and geometric spanners , 2010, CCCG.

[15]  Michiel H. M. Smid,et al.  Geometric spanners with small chromatic number , 2009, Comput. Geom..

[16]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[17]  Joachim Gudmundsson,et al.  A simple and efficient kinetic spanner , 2010, Comput. Geom..

[18]  Sariel Har-Peled,et al.  Fast construction of nets in low dimensional metrics, and their applications , 2004, SCG.

[19]  Tamás Lukovszki,et al.  New Results of Fault Tolerant Geometric Spanners , 1999, WADS.

[20]  Giri Narasimhan,et al.  Geometric spanner networks , 2007 .

[21]  Robin Thomas,et al.  Planar Separators , 1994, SIAM J. Discret. Math..

[22]  Prosenjit Bose,et al.  Spanners of Additively Weighted Point Sets , 2008, SWAT.

[23]  Joachim Gudmundsson,et al.  Sparse geometric graphs with small dilation , 2008, Comput. Geom..

[24]  Matthew J. Katz,et al.  Minimum power energy spanners in wireless ad hoc networks , 2011, Wirel. Networks.

[25]  Lee-Ad Gottlieb,et al.  An Optimal Dynamic Spanner for Doubling Metric Spaces , 2008, ESA.

[26]  Michiel H. M. Smid Geometric spanners with few edges and degree five , 2006, CATS.

[27]  Sariel Har-Peled Geometric Approximation Algorithms , 2011 .

[28]  Shay Solomon From hierarchical partitions to hierarchical covers: optimal fault-tolerant spanners for doubling metrics , 2014, STOC.

[29]  Michiel H. M. Smid,et al.  Planar Spanners and Approximate Shortest Path Queries among Obstacles in the Plane , 1996, ESA.

[30]  Xiang-Yang Li,et al.  Minimum power assignment in wireless ad hoc networks with spanner property , 2004, 2004 Workshop on High Performance Switching and Routing, 2004. HPSR..

[31]  Gautam Das,et al.  WHICH TRIANGULATIONS APPROXIMATE THE COMPLETE GRAPH? , 2022 .

[32]  Michiel H. M. Smid,et al.  Randomized and deterministic algorithms for geometric spanners of small diameter , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[33]  Prosenjit Bose,et al.  Stable Roommates Spanner , 2013, Comput. Geom..

[34]  Giri Narasimhan,et al.  A Fast Algorithm for Constructing Sparse Euclidean Spanners , 1997, Int. J. Comput. Geom. Appl..

[35]  David Eppstein,et al.  Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.

[36]  Michiel H. M. Smid,et al.  Computing the Greedy Spanner in Near-Quadratic Time , 2008, Algorithmica.

[37]  Prosenjit Bose,et al.  Polygon Cutting: Revisited , 1998, JCDCG.

[38]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[39]  Artur Czumaj,et al.  Fault-Tolerant Geometric Spanners , 2003, SCG '03.

[40]  Hanan Shpungin,et al.  Improved Multi-criteria Spanners for Ad-Hoc Networks Under Energy and Distance Metrics , 2010, INFOCOM.

[41]  Xiang-Yang Li,et al.  Efficient Construction of Spanners in $d$-Dimensions , 2013, ArXiv.

[42]  Paul Chew,et al.  There are Planar Graphs Almost as Good as the Complete Graph , 1989, J. Comput. Syst. Sci..

[43]  Joachim Gudmundsson,et al.  Fast Greedy Algorithms for Constructing Sparse Geometric Spanners , 2002, SIAM J. Comput..

[44]  Paz Carmi,et al.  Bounded Degree Planar Geometric Spanners , 2010, ArXiv.

[45]  Giri Narasimhan,et al.  Improved Algorithms for Constructing Fault-Tolerant Spanners , 2001, Algorithmica.

[46]  Michiel H. M. Smid,et al.  Euclidean spanners: short, thin, and lanky , 1995, STOC '95.