Monotonicity in Inverse Medium Scattering on Unbounded Domains

We discuss a time-harmonic inverse scattering problem for the Helmholtz equation with compactly supported penetrable and possibly inhomogeneous scattering objects in an unbounded homogeneous backgr...

[1]  Peter Monk,et al.  The Linear Sampling Method in Inverse Electromagnetic Scattering , 2010 .

[2]  Bastian Harrach,et al.  Simultaneous determination of the diffusion and absorption coefficient from boundary data , 2012 .

[3]  Henrik Garde,et al.  Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography , 2015, Numerische Mathematik.

[4]  Armin Lechleiter,et al.  The inside–outside duality for scattering problems by inhomogeneous media , 2013 .

[5]  A. Kirsch,et al.  A simple method for solving inverse scattering problems in the resonance region , 1996 .

[6]  Bastian Harrach,et al.  Enhancing residual-based techniques with shape reconstruction features in electrical impedance tomography , 2015, 1511.07079.

[7]  Bastian Harrach,et al.  Local uniqueness for an inverse boundary value problem with partial data , 2016, 1810.05834.

[8]  Armin Lechleiter,et al.  Difference Factorizations and Monotonicity in Inverse Medium Scattering for Contrasts with Fixed Sign on the Boundary , 2016, SIAM J. Math. Anal..

[9]  Andreas Kirsch,et al.  Factorization of the far-field operator for the inhomogeneous medium case and an application in inverse scattering theory , 1999 .

[10]  Jin Keun Seo,et al.  Exact Shape-Reconstruction by One-Step Linearization in Electrical Impedance Tomography , 2010, SIAM J. Math. Anal..

[11]  Jin Keun Seo,et al.  Monotonicity-based electrical impedance tomography for lung imaging , 2017, 1702.02563.

[12]  Antonello Tamburrino,et al.  Design of a Real-Time Eddy Current Tomography System , 2017, IEEE Transactions on Magnetics.

[13]  A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.

[14]  Fioralba Cakoni,et al.  Inverse scattering theory and transmission eigenvalues , 2016 .

[15]  Jin Keun Seo,et al.  The inverse conductivity problem with one measurement: stability and estimation of size , 1997 .

[16]  B. Harrach,et al.  Combining frequency-difference and ultrasound modulated electrical impedance tomography , 2015, 1810.04392.

[17]  B. Harrach On uniqueness in diffuse optical tomography , 2009 .

[18]  J. Hayashi [Sampling methods]. , 1982, Josanpu zasshi = The Japanese journal for midwife.

[19]  Bastian Gebauer,et al.  Localized potentials in electrical impedance tomography , 2008 .

[20]  Roland Potthast,et al.  A survey on sampling and probe methods for inverse problems , 2006 .

[21]  Bastian Harrach,et al.  Unique shape detection in transient eddy current problems , 2013 .

[22]  Bastian von Harrach,et al.  Resolution Guarantees in Electrical Impedance Tomography , 2015, IEEE Transactions on Medical Imaging.

[23]  Bastian von Harrach,et al.  Monotonicity-Based Shape Reconstruction in Electrical Impedance Tomography , 2013, SIAM J. Math. Anal..

[24]  A. Kirsch Remarks on the Born approximation and the Factorization Method , 2017 .

[25]  Bastian Harrach,et al.  Monotonicity-based regularization for phantom experiment data in Electrical Impedance Tomography , 2016, 1610.05718.

[26]  Andrea Barth,et al.  Detecting stochastic inclusions in electrical impedance tomography , 2017, 1706.03962.

[27]  Lalita Udpa,et al.  Monotonicity Based Imaging Method in Time Domain Eddy Current Testing , 2016 .

[28]  Masaru Ikehata,et al.  Size estimation of inclusion , 1998 .

[29]  Lalita Udpa,et al.  Monotonicity principle in pulsed eddy current testing and its application to defect sizing , 2017, 2017 International Applied Computational Electromagnetics Society Symposium - Italy (ACES).

[30]  Andreas Kirsch,et al.  Characterization of the shape of a scattering obstacle using the spectral data of the far field operator , 1998 .

[31]  Martin Brühl,et al.  Explicit Characterization of Inclusions in Electrical Impedance Tomography , 2001, SIAM J. Math. Anal..

[32]  Antonello Tamburrino,et al.  A new non-iterative inversion method for electrical resistance tomography , 2002 .

[33]  A. Kirsch The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media , 2002 .

[34]  Armin Lechleiter,et al.  The factorization method is independent of transmission eigenvalues , 2009 .

[35]  Henrik Garde,et al.  The regularized monotonicity method: Detecting irregular indefinite inclusions , 2017, Inverse Problems & Imaging.

[36]  Bastian von Harrach,et al.  Monotonicity and Enclosure Methods for the p-Laplace Equation , 2017, SIAM J. Appl. Math..

[37]  Bastian Harrach,et al.  Monotonicity and local uniqueness for the Helmholtz equation , 2017, Analysis & PDE.

[38]  Bastian von Harrach,et al.  Recent Progress on the Factorization Method for Electrical Impedance Tomography , 2013, Comput. Math. Methods Medicine.

[39]  N I Grinberg,et al.  The Factorization Method for Inverse Problems , 2007 .

[40]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[41]  Antonello Tamburrino,et al.  A Novel Technique for Evaluating the Effective Permittivity of Inhomogeneous Interconnects Based on the Monotonicity Property , 2016, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[42]  Bastian Harrach,et al.  Monotonicity-based Inversion of the Fractional Schrödinger Equation I. Positive Potentials , 2017, SIAM J. Math. Anal..

[43]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[44]  Henrik Garde,et al.  Comparison of linear and non-linear monotonicity-based shape reconstruction using exact matrix characterizations , 2016, 1602.04053.

[45]  Fioralba Cakoni,et al.  A Qualitative Approach to Inverse Scattering Theory , 2013 .

[46]  John Sylvester,et al.  Uncertainty Principles for Inverse Source Problems, Far Field Splitting, and Data Completion , 2017, SIAM J. Appl. Math..