On representations of some thickness-two graphs

This paper considers representations of graphs as rectanglevisibility graphs and as doubly linear graphs. These are, respectively, graphs whose vertices are isothetic rectangles in the plane with adjacency determined by horizontal and vertical visibility, and graphs that can be drawn as the union of two straight-edged planar graphs. We prove that these graphs have, with n vertices, at most 6n−20 (resp., 6n−18) edges, and we provide examples of these graphs with 6n−20 edges for each n≥8.

[1]  F. Harary,et al.  Every planar graph with nine points has a nonplanar complement , 1962 .

[2]  Thomas C. Shermer,et al.  On Rectangle Visibility Graphs. III. External Visibility and Complexity , 1996, CCCG.

[3]  Carsten Thomassen,et al.  Rectilinear drawings of graphs , 1988, J. Graph Theory.

[4]  David S. Johnson,et al.  An application of graph coloring to printed circuit testing , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[5]  G. Ringel Färbungsprobleme auf Flächen und Graphen , 1959 .

[6]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[7]  Jorge Nuno Silva,et al.  Mathematical Games , 1959, Nature.

[8]  Prosenjit Bose,et al.  On Rectangle Visibility Graphs , 1996, GD.

[9]  H. S. M. Coxeter,et al.  Vorlesungen über die Theorie der Polyeder , 1935 .

[10]  Prosenjit Bose,et al.  On Rectangular Visibility Graphs, Graph Drawing , 1997 .

[11]  Erkki Mäkinen,et al.  ON THE THICKNESS OF A GRAPH , 1996 .

[12]  Joan P. Hutchinson,et al.  Rectangle-visibility Representations of Bipartite Graphs , 1994, Discret. Appl. Math..

[13]  E. Steinitz,et al.  Vorlesungen über die Theorie der Polyeder unter Einfluss der Elemente der Topologie , 1934 .

[14]  Stephen K. Wismath,et al.  Characterizing bar line-of-sight graphs , 1985, SCG '85.

[15]  J. Hutchinson,et al.  Coloring Ordinary Maps, Maps of Empires, and Maps of the Moon , 1993 .

[16]  Anthony Mansfield,et al.  Determining the thickness of graphs is NP-hard , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  David G. Kirkpatrick,et al.  Weighted Visibility Graphs of Bars and Related Flow Problems (Extended Abstract) , 1989, WADS.

[18]  W. T. Tutte The Non-Biplanar Character of the Complete 9-Graph , 1963, Canadian Mathematical Bulletin.

[19]  Roberto Tamassia,et al.  A unified approach to visibility representations of planar graphs , 1986, Discret. Comput. Geom..