Efficient matrix approach for classical inference in state space models

Reformulating a Gaussian state space model in matrix form, we obtain expressions for the likelihood function and the smoothing vector that are generally more efficient than the standard recursive algorithm. We also retrieve filtering weights and deal with data irregularities.

[1]  William J. McCausland,et al.  Simulation smoothing for state-space models: A computational efficiency analysis , 2011, Comput. Stat. Data Anal..

[2]  Siem Jan Koopman,et al.  Time Series Analysis by State Space Methods , 2001 .

[3]  R. Mariano,et al.  A New Coincident Index of Business Cycles Based on Monthly and Quarterly Series , 2002 .

[4]  R. Shumway,et al.  AN APPROACH TO TIME SERIES SMOOTHING AND FORECASTING USING THE EM ALGORITHM , 1982 .

[5]  Michele Modugno,et al.  Maximum Likelihood Estimation of Factor Models on Data Sets with Arbitrary Pattern of Missing Data , 2010, SSRN Electronic Journal.

[6]  J. Geweke,et al.  Bayesian estimation of state-space models using the Metropolis-Hastings algorithm within Gibbs sampling , 2001 .

[7]  Siem Jan Koopman,et al.  Computing Observation Weights for Signal Extraction and Filtering , 2003 .

[8]  Joshua C. C. Chan,et al.  Efficient simulation and integrated likelihood estimation in state space models , 2009, Int. J. Math. Model. Numer. Optimisation.

[9]  V. Chernozhukov,et al.  An MCMC Approach to Classical Estimation , 2002, 2301.07782.

[10]  David H. Small,et al.  Nowcasting: the real time informational content of macroeconomic data releases , 2008 .

[11]  Andrew Harvey,et al.  Estimating Missing Observations in Economic Time Series , 1984 .

[12]  Frank Schorfheide,et al.  Bayesian Analysis of DSGE Models , 2005 .

[13]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[14]  D. Giannone,et al.  Now-Casting and the Real-time Data Flow , 2012, SSRN Electronic Journal.

[15]  Andrew Harvey,et al.  Forecasting, Structural Time Series Models and the Kalman Filter. , 1991 .