Degenerate polyexponential functions and degenerate Bell polynomials

[1]  On the Zeroes of Certain Classes of Integral Taylor Series. Part II.—On The Integral Function ∑n=0∞xn(n+a)8n! and Other Similar Functions , 1905 .

[2]  On the Zeroes Certain Classes of Integral Taylor Series. Part I.—On the Integral Function ∑n=0∞xφ(n){φ(n)}! , 1905 .

[3]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions , 1920, Nature.

[4]  L. Comtet,et al.  Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .

[5]  Taekyun Kim,et al.  ON THE ANALOGS OF BERNOULLI AND EULER NUMBERS, RELATED IDENTITIES AND ZETA AND L-FUNCTIONS , 2008 .

[6]  Abdelfattah Mustafa,et al.  New results on higher-order Daehee and Bernoulli numbers and polynomials , 2015, 1503.00104.

[7]  Taekyun Kim A note on degenerate stirling polynomials of the second kind , 2017 .

[8]  Taekyun Kim,et al.  Degenerate Laplace transform and degenerate gamma function , 2017, 1701.06881.

[9]  Xin Lin,et al.  Identities involving trigonometric functions and Bernoulli numbers , 2018, Appl. Math. Comput..

[10]  Lalit Mohan Upadhyaya On The Degenerate Laplace Transform-I , 2018 .

[11]  A note on degenerate central factorial polynomials of the second kind , 2019 .

[12]  Dae San Kim,et al.  Degenerate Stirling Polynomials of the Second Kind and Some Applications , 2019, Symmetry.

[14]  Taekyun Kim,et al.  A Note on Polyexponential and Unipoly Functions , 2019, Russian Journal of Mathematical Physics.