The possibilities of modelling the membrane separation processes using artificial neural networks

[1]  Eric Latrille,et al.  Application of artificial neural networks for crossflow microfiltration modelling: “black-box” and semi-physical approaches , 1997 .

[2]  S. Chellam,et al.  Predicting contaminant removal during municipal drinking water nanofiltration using artificial neural networks , 2003 .

[3]  W. Richard Bowen,et al.  Prediction of the rate of crossflow membrane ultrafiltration of colloids: A neural network approach , 1998 .

[4]  Stefano Curcio,et al.  REDUCTION AND CONTROL OF FLUX DECLINE IN CROSS-FLOW MEMBRANE PROCESSES MODELED BY ARTIFICIAL NEURAL NETWORKS , 2006 .

[5]  Coskun Aydiner,et al.  Modeling of flux decline in crossflow microfiltration using neural networks: the case of phosphate removal , 2005 .

[6]  W. Richard Bowen,et al.  Predicting salt rejections at nanofiltration membranes using artificial neural networks , 2000 .

[7]  G. B. Sahoo,et al.  Predicting flux decline in crossflow membranes using artificial neural networks and genetic algorithms , 2006 .

[8]  A. Kim,et al.  Prediction of permeate flux decline in crossflow membrane filtration of colloidal suspension: a radial basis function neural network approach , 2006 .

[9]  J. Laîné,et al.  Neural networks for prediction of ultrafiltration transmembrane pressure – application to drinking water production , 1998 .

[10]  G. Trystram,et al.  Dynamic modeling of crossflow microfiltration using neural networks , 1995 .

[11]  Michel Cabassud,et al.  Dynamic modelling of crossflow microfiltration of bentonite suspension using recurrent neural networks , 1999 .

[12]  Fernando Fdz-Polanco,et al.  Anaerobic treatment of cheese-production wastewater using a UASB reactor , 1991 .

[13]  L. Raskin,et al.  Characterization of dairy waste streams, current treatment practices, and potential for biological nutrient removal , 1998 .

[14]  Seyed Mohammad Ali Razavi,et al.  Dynamic prediction of milk ultrafiltration performance: A neural network approach , 2003 .

[15]  Shankararaman Chellam,et al.  Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions , 2005 .

[16]  S. Chellam,et al.  Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks , 2005 .

[17]  Akbar Shahsavand,et al.  Neural networks modeling of hollow fiber membrane processes , 2007 .

[18]  Sunando DasGupta,et al.  Modeling the performance of batch ultrafiltration of synthetic fruit juice and mosambi juice using artificial neural network , 2005 .

[19]  Abhay B. Bulsari,et al.  SIMULATION OF MEMBRANE SEPARATION BY NEURAL NETWORKS , 1995 .

[20]  Michel Cabassud,et al.  Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production , 2000 .

[21]  Michel Cabassud,et al.  Modelling of ultrafiltration fouling by neural network , 1998 .

[22]  S. Chellam,et al.  Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networks , 2003 .

[23]  Octavian Pastravanu,et al.  Neural network models for ultrafiltration and backwashing , 2000 .

[24]  W. Richard Bowen,et al.  DYNAMIC ULTRAFILTRATION OF PROTEINS-A NEURAL NETWORK APPROACH , 1998 .

[25]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[26]  Michel Cabassud,et al.  Neural networks: a tool to improve UF plant productivity , 2002 .