An adaptive approach to the numerical solution of Fresnel's wave equation

An adaptive approach to the numerical solution of the wave propagation in integrated optics devices with 1-D cross sections is described. Fresnel's approximation of the exact wave equation resulting from Maxwell's equations is considered. A criterion to estimate the validity of this approximation is derived. Discretization in longitudinal direction with step-size control leads to a stationary subproblem for the transversal field distribution, which is then handled by an adaptive finite-element method. Thus, full adaptivity of the algorithm is realized. The numerical examples focus on waveguide tapers. >

[1]  Peter Deuflhard,et al.  Recent progress in extrapolation methods for ordinary differential equations , 1985 .

[2]  Reinhold Pregla,et al.  New beam-propagation algorithm based on the method of lines , 1991, Integrated Photonics Research.

[3]  R. P. Ratowsky,et al.  Accurate numerical solution of the Helmholtz equation by iterative Lanczos reduction. , 1991, Optics letters.

[4]  P. Deuflhard Order and stepsize control in extrapolation methods , 1983 .

[5]  B. Hermansson,et al.  Efficient beam propagation techniques , 1990 .

[6]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[7]  Erich Rothe,et al.  Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben , 1930 .

[8]  F. Schmidt,et al.  Adaptive multilevel beam propagation method , 1992, IEEE Photonics Technology Letters.

[9]  Folkmar A. Bornemann,et al.  An adaptive multilevel approach to parabolic equations : II. Variable-order time discretization based on a multiplicative error correction , 1991, IMPACT Comput. Sci. Eng..

[10]  K. Petermann,et al.  A novel beam propagation method for large refractive index steps and large propagation distance , 1991, IEEE Photonics Technology Letters.

[11]  Folkmar A. Bornemann,et al.  An adaptive multilevel approach to parabolic equations : II. Variable-order time discretization based on a multiplicative error correction , 1991, IMPACT Comput. Sci. Eng..

[12]  M. Feit,et al.  Light propagation in graded-index optical fibers. , 1978, Applied optics.

[13]  D. Marcuse Theory of dielectric optical waveguides , 1974 .

[14]  Folkmar Bornemann,et al.  An adaptive multilevel approach to parabolic equations I. General theory and 1D implementation , 1991, IMPACT Comput. Sci. Eng..

[15]  R. Haul,et al.  H. Sonntag: Lehrbuch der Kolloidwissenschaft, 1. Auflage. VEB Deutscher Verlag der Wissenschaften, Berlin 1977. 325 Seiten, 165 Abbildungen und 25 Tabellen, Preis: M 35,– , 1978 .

[16]  Peter Deuflhard,et al.  Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..