Scene Segmentation Assisted by Stereo Vision

Stereo vision systems for 3D reconstruction have been deeply studied and are nowadays capable to provide a reasonably accurate estimate of the 3D geometry of a framed scene. They are commonly used to merely extract the 3D structure of the scene. However, a great variety of applications is not interested in the geometry itself, but rather in scene analysis operations, among which scene segmentation is a very important one. Classically, scene segmentation has been tackled by means of color information only, but it turns out to be a badly conditioned image processing operation which remains very challenging. This paper proposes a new framework for scene segmentation where color information is assisted by 3D geometry data, obtained by stereo vision techniques. This approach resembles in some way what happens inside our brain, where the two different views coming from the eyes are used to recognize the various object in the scene and by exploiting a pair of images instead of just one allows to greatly improve the segmentation quality and robustness. Clearly the performance of the approach is dependent on the specific stereo vision algorithm used in order to extract the geometry information. This paper investigates which stereo vision algorithms are best suited to this kind of analysis. Experimental results confirm the effectiveness of the proposed framework and allow to properly rank stereo vision systems on the basis of their performances when applied to the scene segmentation problem.

[1]  Stefano Mattoccia,et al.  Accurate and Efficient Cost Aggregation Strategy for Stereo Correspondence Based on Approximated Joint Bilateral Filtering , 2009, ACCV.

[2]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Heiko Hirschmüller,et al.  Stereo Vision in Structured Environments by Consistent Semi-Global Matching , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[4]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[6]  Andrew Blake,et al.  Probabilistic Fusion of Stereo with Color and Contrast for Bilayer Segmentation , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  M. J. McDonnell,et al.  Box-filtering techniques , 1981 .

[8]  In-So Kweon,et al.  Adaptive Support-Weight Approach for Correspondence Search , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[10]  Federico Tombari,et al.  Segmentation-Based Adaptive Support for Accurate Stereo Correspondence , 2007, PSIVT.

[11]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[12]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Darius Burschka,et al.  Advances in Computational Stereo , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Jitendra Malik,et al.  Spectral grouping using the Nystrom method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Franklin C. Crow,et al.  Summed-area tables for texture mapping , 1984, SIGGRAPH.