Using Gradient Based Information to Build Hybrid Multi-objective Evolutionary Algorithms

Over the last decades evolutionary algorithms have become very popular to solve multiobjective optimization problems (MOPs). Several multi-objective evolutionary algorithms (MOEAs) have been developed to solve MOPs with successfull results. A feature of these algorithms is that they do not exploit concrete information, about continuity or differentiability of the objective functions of the problems—which is considered as information of the problem domain. One question that arises when seeking for more efficient MOEAs, is about the effectiveness of including this mathematical information during the MOEA execution. In particular, we are interested in exploiting the gradient information of the objective functions during the evolutionary search. In this thesis, the inclusion of gradient-based local searchers into MOEAs is presented. An in depth study of the gradient-based search directions is included, as well as the proposal of diverse types of hybridization. This coupling has two aims, one is made in order to improve the performance of these stochastic algorithms, and the second one is to efficiently refine their solution sets. Hybrid gradient-based MOEAs are built and tested, in this work, over widely used benchmark MOPs. The numerical results are analyzed and discussed; also, conclusions and extensions for promising future research paths are included.

[1]  Peter A. N. Bosman,et al.  Exploiting gradient information in numerical multi--objective evolutionary optimization , 2005, GECCO '05.

[2]  Peter Deuflhard,et al.  Scientific Computing with Ordinary Differential Equations , 2002 .

[3]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[4]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[5]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[6]  Frederico G. Guimarães,et al.  A Quadratic Approximation-Based Local Search Procedure for Multiobjective Genetic Algorithms , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[7]  Massimiliano Vasile,et al.  Computing approximate solutions of scalar optimization problems and applications in space mission design , 2010, IEEE Congress on Evolutionary Computation.

[8]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[9]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[10]  Hisao Ishibuchi,et al.  Generalization of Dominance Relation-Based Replacement Rules for Memetic EMO Algorithms , 2003, GECCO.

[11]  A. Charnes,et al.  Management Models and Industrial Applications of Linear Programming , 1961 .

[12]  Massimiliano Vasile,et al.  Design of optimal spacecraft-asteroid formations through a hybrid global optimization approach , 2008, Int. J. Intell. Comput. Cybern..

[13]  Francisco Herrera,et al.  Real-Coded Memetic Algorithms with Crossover Hill-Climbing , 2004, Evolutionary Computation.

[14]  Johannes Jahn,et al.  Multiobjective Search Algorithm with Subdivision Technique , 2006, Comput. Optim. Appl..

[15]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[16]  Enrico Rigoni,et al.  MOGA-II PERFORMANCE ON NOISY OPTIMIZATION PROBLEMS , 2004 .

[17]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[18]  Joshua D. Knowles Local-search and hybrid evolutionary algorithms for Pareto optimization , 2002 .

[19]  Carlos A. Coello Coello,et al.  Evolutionary continuation methods for optimization problems , 2009, GECCO.

[20]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[21]  C. A. Coello Coello,et al.  Hybridizing evolutionary strategies with continuation methods for solving multi-objective problems , 2008 .

[22]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[23]  Isao Ono,et al.  Uniform sampling of local pareto-optimal solution curves by pareto path following and its applications in multi-objective GA , 2007, GECCO '07.

[24]  Michael E. Henderson,et al.  Multiple Parameter Continuation: Computing Implicitly Defined k-Manifolds , 2002, Int. J. Bifurc. Chaos.

[25]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[26]  Massimiliano Vasile,et al.  On the detection of nearly optimal solutions in the context of single-objective space mission design problems , 2011 .

[27]  Carlos A. Coello Coello,et al.  Solving Multiobjective Optimization Problems Using an Artificial Immune System , 2005, Genetic Programming and Evolvable Machines.

[28]  W. Hart Adaptive global optimization with local search , 1994 .

[29]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 , 2000 .

[30]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[31]  Vilfredo Pareto,et al.  Cours d'économie politique : professé à l'Université de Lausanne , 1896 .

[32]  Massimiliano Vasile,et al.  A hybrid multiagent approach for global trajectory optimization , 2009, J. Glob. Optim..

[33]  H. Kita,et al.  Failure of Pareto-based MOEAs: does non-dominated really mean near to optimal? , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[34]  Carlos A. Coello Coello,et al.  Using gradient-based information to deal with scalability in multi-objective evolutionary algorithms , 2009, 2009 IEEE Congress on Evolutionary Computation.

[35]  Jürgen Teich,et al.  Systematic integration of parameterized local search into evolutionary algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[36]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[37]  Carlos A. Coello Coello,et al.  Online Objective Reduction to Deal with Many-Objective Problems , 2009, EMO.

[38]  Jim Smith,et al.  Operator and parameter adaptation in genetic algorithms , 1997, Soft Comput..

[39]  Jürgen Teich,et al.  Covering Pareto Sets by Multilevel Evolutionary Subdivision Techniques , 2003, EMO.

[40]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[41]  Carlos A. Coello Coello,et al.  Seeding the initial population of a multi-objective evolutionary algorithm using gradient-based information , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[42]  L. Lasdon,et al.  On a bicriterion formation of the problems of integrated system identification and system optimization , 1971 .

[43]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[44]  Shigenobu Kobayashi,et al.  Hybridization of genetic algorithm and local search in multiobjective function optimization: recommendation of GA then LS , 2006, GECCO '06.

[45]  Isao Ono,et al.  Local Search for Multiobjective Function Optimization: Pareto Descent Method , 2006 .

[46]  Martin Brown,et al.  Effective Use of Directional Information in Multi-objective Evolutionary Computation , 2003, GECCO.

[47]  H. Mukai Algorithms for multicriterion optimization , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[48]  Oliver Schütze,et al.  On Continuation Methods for the Numerical Treatment of Multi-Objective Optimization Problems , 2005, Practical Approaches to Multi-Objective Optimization.

[49]  Enrico Rigoni,et al.  NBI and MOGA-II, two complementary algorithms for Multi-Objective optimizations , 2005, Practical Approaches to Multi-Objective Optimization.

[50]  Carlos A. Coello Coello,et al.  The Gradient Free Directed Search Method as Local Search within Multi-Objective Evolutionary Algorithms , 2012, EVOLVE.

[51]  Keith Dickerson EVOLVE - A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation , 2013, EVOLVE.

[52]  Peter A. N. Bosman,et al.  Combining gradient techniques for numerical multi-objective evolutionary optimization , 2006, GECCO '06.

[53]  Carlos A. Coello Coello,et al.  A Memetic PSO Algorithm for Scalar Optimization Problems , 2007, 2007 IEEE Swarm Intelligence Symposium.

[54]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[55]  Oliver Kramer,et al.  On the hybridization of SMS-EMOA and local search for continuous multiobjective optimization , 2009, GECCO '09.

[56]  Martin Brown,et al.  Directed Multi-Objective Optimization , 2005, Int. J. Comput. Syst. Signals.

[57]  Kaisa Miettinen,et al.  Some Methods for Nonlinear Multi-objective Optimization , 2001, EMO.

[58]  Carlos A. Coello Coello,et al.  A painless gradient-assisted multi-objective memetic mechanism for solving continuous bi-objective optimization problems , 2010, IEEE Congress on Evolutionary Computation.

[59]  Edgar Alfredo Portilla-Flores,et al.  Integration of structure and control using an evolutionary approach: an application to the optimal concurrent design of a CVT , 2007 .

[60]  W. Karush Minima of Functions of Several Variables with Inequalities as Side Conditions , 2014 .

[61]  Carlos A. Coello Coello,et al.  HCS: A New Local Search Strategy for Memetic Multiobjective Evolutionary Algorithms , 2010, IEEE Transactions on Evolutionary Computation.

[62]  Lakhmi C. Jain,et al.  Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[63]  K. Deb,et al.  Hybrid methods for multi-objective evolutionary algorithms , 2002 .

[64]  Carlos A. Coello Coello,et al.  Some comments on GD and IGD and relations to the Hausdorff distance , 2010, GECCO '10.

[65]  Massimiliano Vasile,et al.  Hybrid Behavioral-Based Multiobjective Space Trajectory Optimization , 2009 .

[66]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[67]  Tapabrata Ray,et al.  A Memetic Algorithm for Dynamic Multiobjective Optimization , 2009 .

[68]  Salvatore Greco,et al.  Evolutionary Multi-Criterion Optimization , 2011, Lecture Notes in Computer Science.

[69]  Pablo Moscato A memetic approach for the travelling salesman problem implementation of a computational ecology for , 1992 .

[70]  Randall Bramley,et al.  Solving Linear Inequalities in a Least Squares Sense , 1996, SIAM J. Sci. Comput..

[71]  Gabriele Eichfelder,et al.  Adaptive Scalarization Methods in Multiobjective Optimization , 2008, Vector Optimization.

[72]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .

[73]  Ferrante Neri,et al.  Integrating Cross-Dominance Adaptation in Multi-Objective Memetic Algorithms , 2009 .

[74]  Gary B. Lamont,et al.  Applications Of Multi-Objective Evolutionary Algorithms , 2004 .

[75]  Bernd Krauskopf,et al.  Numerical Continuation Methods for Dynamical Systems , 2007 .

[76]  Marco Laumanns,et al.  Computing Gap Free Pareto Front Approximations with Stochastic Search Algorithms , 2010, Evolutionary Computation.

[77]  Andreas Griewank,et al.  Automatic Differentiation of Algorithms: From Simulation to Optimization , 2000, Springer New York.

[78]  Carlos A. Coello Coello,et al.  On the Influence of the Number of Objectives on the Hardness of a Multiobjective Optimization Problem , 2011, IEEE Transactions on Evolutionary Computation.

[79]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[80]  S. Schäffler,et al.  Stochastic Method for the Solution of Unconstrained Vector Optimization Problems , 2002 .

[81]  Dirk Thierens,et al.  The Naive MIDEA: A Baseline Multi-objective EA , 2005, EMO.

[82]  Bernhard Sendhoff,et al.  Adapting Weighted Aggregation for Multiobjective Evolution Strategies , 2001, EMO.

[83]  J. Jahn Mathematical vector optimization in partially ordered linear spaces , 1986 .

[84]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[85]  Massimiliano Vasile A behavioral-based meta-heuristic for robust global trajectory optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[86]  Joshua D. Knowles,et al.  Memetic Algorithms for Multiobjective Optimization: Issues, Methods and Prospects , 2004 .

[87]  M. K. Luhandjula Studies in Fuzziness and Soft Computing , 2013 .

[88]  Carlos A. Coello Coello,et al.  A new memetic strategy for the numerical treatment of multi-objective optimization problems , 2008, GECCO '08.

[89]  Carlos A. Coello Coello,et al.  Using gradient information for multi-objective problems in the evolutionary context , 2010, GECCO '10.

[90]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[91]  Naim Dahnoun,et al.  Studies in Computational Intelligence , 2013 .

[92]  C. Hillermeier Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach , 2001 .

[93]  Pradyumn Kumar Shukla,et al.  On Gradient Based Local Search Methods in Unconstrained Evolutionary Multi-objective Optimization , 2007, EMO.

[94]  Hisao Ishibuchi,et al.  Balance Between Genetic Search And Local Search In Hybrid Evolutionary Multi-criterion Optimization Algorithms , 2002, GECCO.

[95]  Alan D. Christiansen,et al.  Multiobjective optimization of trusses using genetic algorithms , 2000 .

[96]  Charles Gide,et al.  Cours d'économie politique , 1911 .

[97]  Takenori Obo,et al.  Evolutionary Multi-Criterion Optimization for Motion Analysis in Computational System Rehabilitation , 2014 .

[98]  L. Armijo Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .

[99]  In Schoenauer,et al.  Parallel Problem Solving from Nature , 1990, Lecture Notes in Computer Science.

[100]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[101]  Xiaolin Hu,et al.  Hybridization of the multi-objective evolutionary algorithms and the gradient-based algorithms , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[102]  M. Dellnitz,et al.  Covering Pareto Sets by Multilevel Subdivision Techniques , 2005 .

[103]  Hisao Ishibuchi,et al.  Multi-objective genetic local search algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[104]  Carlos A. Coello Coello,et al.  DEMORS: A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems , 2010, Comput. Oper. Res..

[105]  Yuren Zhou,et al.  Multiobjective Optimization and Hybrid Evolutionary Algorithm to Solve Constrained Optimization Problems , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[106]  Pradyumn Kumar Shukla Gradient Based Stochastic Mutation Operators in Evolutionary Multi-objective Optimization , 2007, ICANNGA.

[107]  El-Ghazali Talbi,et al.  New analysis of the optimization of electromagnetic shielding properties using conducting polymers and a multi‐objective approach , 2008 .

[108]  Jürgen Branke,et al.  About Selecting the Personal Best in Multi-Objective Particle Swarm Optimization , 2006, PPSN.

[109]  Jörg Fliege,et al.  Gap-free computation of Pareto-points by quadratic scalarizations , 2004, Math. Methods Oper. Res..

[110]  Jonathan F. Bard,et al.  Engineering Optimization: Theory and Practice, Third Edition , 1997 .

[111]  Ian Griffin,et al.  Hybrid multiobjective genetic algorithm with a new adaptive local search process , 2005, GECCO '05.

[112]  Carlos A. Coello Coello,et al.  New challenges for memetic algorithms on continuous multi-objective problems , 2010, GECCO '10.

[113]  Andrzej Jaszkiewicz,et al.  Do multiple-objective metaheuristics deliver on their promises? A computational experiment on the set-covering problem , 2003, IEEE Trans. Evol. Comput..

[114]  Kalyanmoy Deb,et al.  Finding Knees in Multi-objective Optimization , 2004, PPSN.

[115]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[116]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[117]  Garret N. Vanderplaats,et al.  Numerical Optimization Techniques for Engineering Design: With Applications , 1984 .

[118]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..

[119]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[120]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[121]  Jörg Fliege,et al.  Steepest descent methods for multicriteria optimization , 2000, Math. Methods Oper. Res..

[122]  Massimiliano Vasile,et al.  Designing optimal low-thrust gravity-assist trajectories using space pruning and a multi-objective approach , 2009 .

[123]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[124]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[125]  M. Farina,et al.  On the optimal solution definition for many-criteria optimization problems , 2002, 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622).

[126]  Hussein A. Abbass,et al.  A Memetic Coevolutionary Multi-Objective Differential Evolution Algorithm , 2009 .

[127]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[128]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[129]  Carlos A. Coello Coello,et al.  A Short Tutorial on Evolutionary Multiobjective Optimization , 2001, EMO.

[130]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[131]  Balram Suman,et al.  Study of simulated annealing based algorithms for multiobjective optimization of a constrained problem , 2004, Comput. Chem. Eng..

[132]  C. Coello,et al.  Multiobjective optimization using a micro-genetic algorithm , 2001 .

[133]  Natalio Krasnogor,et al.  Studies on the theory and design space of memetic algorithms , 2002 .

[134]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[135]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[136]  Kathrin Klamroth,et al.  Unbiased approximation in multicriteria optimization , 2003, Math. Methods Oper. Res..

[137]  Kalyanmoy Deb,et al.  A Local Search Based Evolutionary Multi-objective Optimization Approach for Fast and Accurate Convergence , 2008, PPSN.

[138]  Carlos A. Coello Coello,et al.  Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[139]  Marco Laumanns,et al.  Convergence of stochastic search algorithms to gap-free pareto front approximations , 2007, GECCO '07.