In-Situ Observation of Environmentally Assisted Crack Initiation and Short Crack Growth Behaviour of New-Generation 7xxx Series Alloys in Humid Air

[1]  T. Burnett,et al.  Understanding the environmentally assisted cracking (EAC) initiation and propagation of new generation 7xxx alloys using slow strain rate testing , 2022, Corrosion Science.

[2]  M. Peel,et al.  3D characterisation of hydrogen environmentally assisted cracking during static loading of AA7449-T7651 , 2021, International Journal of Fracture.

[3]  H. Maier,et al.  Crack initiation of an industrial 7XXX aluminum alloy in humid air analyzed via slow strain rate testing and constant displacement testing , 2021 .

[4]  P. Withers,et al.  Environmentally induced crack (EIC) initiation, propagation, and failure: A 3D in-situ time-lapse study of AA5083 H131 , 2020 .

[5]  J. Robson,et al.  Environmental cracking performance of new generation thick plate 7000-T7x series alloys in humid air , 2020 .

[6]  T. Tsuru,et al.  Hydrogen-accelerated spontaneous microcracking in high-strength aluminium alloys , 2020, Scientific Reports.

[7]  M. Tiryakioğlu The Effect of Hydrogen on Pore Formation in Aluminum Alloy Castings: Myth Versus Reality , 2020, Metals.

[8]  J. Buffière,et al.  Influence of Pore Size and Crystallography on the Small Crack HCF Behavior of an A357-T6 Cast Aluminum Alloy , 2020, Metallurgical and Materials Transactions A.

[9]  Jeremy J. Baumberg,et al.  Robotic microscopy for everyone: the OpenFlexure microscope , 2019, bioRxiv.

[10]  M. Peel,et al.  Hydrogen environmentally assisted cracking during static loading of AA7075 and AA7449 , 2019, Materials Science and Engineering: A.

[11]  Sandeep Kumar Dwivedi,et al.  Hydrogen embrittlement in different materials: A review , 2018, International Journal of Hydrogen Energy.

[12]  N. Birbilis,et al.  Fundamentals and advances in magnesium alloy corrosion , 2017 .

[13]  S. Pujari,et al.  Surface integrity of wire EDMed aluminum alloy: A comprehensive experimental investigation , 2016, Journal of King Saud University - Engineering Sciences.

[14]  Michael D. Sangid,et al.  Fatigue behavior of IN718 microtrusses produced via additive manufacturing , 2016 .

[15]  P. Prangnell,et al.  Porosity Regrowth During Heat Treatment of Hot Isostatically Pressed Additively Manufactured Titanium Components , 2016 .

[16]  Philip J. Withers,et al.  The role of crack branching in stress corrosion cracking of aluminium alloys , 2015 .

[17]  N. Birbilis,et al.  Some effects of alloy composition on stress corrosion cracking in Al–Zn–Mg–Cu alloys , 2015 .

[18]  T. Prabhu An Overview of High-Performance Aircraft Structural Al Alloy-AA7085 , 2015, Acta Metallurgica Sinica (English Letters).

[19]  F. De Carlo,et al.  In Situ Investigation of High Humidity Stress Corrosion Cracking of 7075 Aluminum Alloy by Three-Dimensional (3D) X-ray Synchrotron Tomography , 2014 .

[20]  Constantinos Soutis,et al.  Recent developments in advanced aircraft aluminium alloys , 2014 .

[21]  Tore Børvik,et al.  Measuring discontinuous displacement fields in cracked specimens using digital image correlation with mesh adaptation and crack-path optimization , 2013 .

[22]  N. Holroyd,et al.  Stress Corrosion Cracking in Al-Zn-Mg-Cu Aluminum Alloys in Saline Environments , 2013, Metallurgical and Materials Transactions A.

[23]  Zhao Zhang,et al.  Corrosion mechanism associated with Mg2Si and Si particles in Al–Mg–Si alloys , 2011 .

[24]  N. Holroyd,et al.  Crack Propagation During Sustained-Load Cracking of Al-Zn-Mg-Cu Aluminum Alloys Exposed to Moist Air or Distilled Water , 2011 .

[25]  Julien Réthoré,et al.  On the Use of NURBS Functions for Displacement Derivatives Measurement by Digital Image Correlation , 2010 .

[26]  Stéphane Roux,et al.  Extended digital image correlation with crack shape optimization , 2008 .

[27]  S. Lynch Progression markings, striations, and crack-arrest markings on fracture surfaces , 2007 .

[28]  S. Roux,et al.  “Finite-Element” Displacement Fields Analysis from Digital Images: Application to Portevin–Le Châtelier Bands , 2006 .

[29]  T. Warner Recently-Developed Aluminium Solutions for Aerospace Applications , 2006 .

[30]  I. Aubert,et al.  Mechanical behaviour of a solid with many stress corrosion growing cracks , 2005 .

[31]  E. A. Starke,et al.  Progress in structural materials for aerospace systems , 2003 .

[32]  J. Scully,et al.  Factors Affecting the Hydrogen Environment Assisted Cracking Resistance of an AL-Zn-Mg-(Cu) Alloy , 2002 .

[33]  J. Scully,et al.  The effects of test temperature, temper, and alloyed copper on the hydrogen-controlled crack growth rate of an Al-Zn-Mg-(Cu) alloy , 2000 .

[34]  R. N. Parkins Localized corrosion and crack initiation , 1988 .

[35]  I. Bernstein,et al.  The effect of copper content and microstructure on the hydrogen embrittlement of AI-6Zn-2Mg alloys , 1983 .

[36]  W. F. Ranson,et al.  Determination of displacements using an improved digital correlation method , 1983, Image Vis. Comput..

[37]  R. A. Oriani Hydrogen Embrittlement of Steels , 1978 .

[38]  M. O. Speidel,et al.  Stress corrosion cracking of aluminum alloys , 1975 .

[39]  L. Rayleigh Investigations in optics, with special reference to the spectroscope , 1880 .

[40]  B. Gault,et al.  Multiscale analysis of grain boundary microstructure in high strength 7xxx Al alloys , 2021 .

[41]  J. T. Staley,et al.  Application of modern aluminum alloys to aircraft , 1996 .

[42]  I. Bernstein,et al.  The effect of copper content and heat treatment on the hydrogen embrittlement of 7050-type alloys , 1988 .

[43]  James C. Newman,et al.  An empirical stress-intensity factor equation for the surface crack , 1981 .

[44]  R. N. Parkins Stress Corrosion Spectrum , 1972 .