Biomagnetism: an application of superconductivity

Describes the biomagnetic method, introducing the basic physical concepts, the measuring devices and some significant results obtained in the measurement of magnetic fields of the human body. Special importance is given to the actual problems that must be faced in detecting biomagnetic fields, and to the present technology of multichannel detectors. Special importance is also given to the applications, which are providing significant progress in clinical investigations.

[1]  V. Foglietti,et al.  A second derivative gradiometer integrated with a dc superconducting interferometer , 1983 .

[2]  K. Lehnertz,et al.  Tinnitus remission objectified by neuromagnetic measurements , 1989, Hearing Research.

[3]  P. Rossini,et al.  Evoked α- and μ-rhythm in humans: a neuromagnetic study , 1990, Brain Research.

[4]  G. Romani,et al.  Auditory evoked magnetic fields and electric potentials , 1990 .

[5]  D. Cohen,et al.  MAGNETOCARDIOGRAMS TAKEN INSIDE A SHIELDED ROOM WITH A SUPERCONDUCTING POINT‐CONTACT MAGNETOMETER , 1970 .

[6]  Risto J. Ilmoniemi,et al.  Chapter 5: Multi-Squid Devices and Their Applications , 1989 .

[7]  Vittorio Pizzella,et al.  A biomagnetic method for studying gastro-intestinal activity , 1989 .

[8]  S. Uchaikin,et al.  Magnetocardiometer based on a single-hole high-Tc SQUID , 1990 .

[9]  M. Hämäläinen,et al.  Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data , 1989, IEEE Transactions on Biomedical Engineering.

[10]  J. Opfer,et al.  A superconducting second-derivative gradiometer , 1974 .

[11]  P. M. Rossini,et al.  Neuromagnetic somatosensory homunculus: A non-invasive approach in humans , 1991, Neuroscience Letters.

[12]  Dietmar Drung,et al.  A 37 channel DC SQUID magnetometer system , 1991 .

[13]  P. Carelli,et al.  Low‐noise tunnel junction dc SQUID’s , 1981 .

[14]  A. Kleinsasser,et al.  Performance of dc SQUIDs with resistively shunted inductance , 1989 .

[15]  G L Romani,et al.  Biomagnetic measurements of spontaneous brain activity in epileptic patients. , 1982, Electroencephalography and clinical neurophysiology.

[16]  Pasquale Carelli,et al.  Localization of biological sources with arrays of superconducting gradiometers , 1986 .

[17]  R Leoni,et al.  A planar second-order DC SQUID gradiometer. , 1991, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.

[18]  M Hoke,et al.  Brainstem auditory evoked magnetic fields in response to stimulation with brief tone pulses. , 1987, The International journal of neuroscience.

[19]  G. Romani,et al.  Magnetic study of the spontaneous brain activity of normal subjects , 1983 .

[20]  D. Barth,et al.  Neuromagnetic localization of epileptiform spike activity in the human brain. , 1982, Science.

[21]  D. Cohen Magnetoencephalography: Detection of the Brain's Electrical Activity with a Superconducting Magnetometer , 1972, Science.

[22]  G. Romani,et al.  Study of focal epilepsy by multichannel neuromagnetic measurements. , 1987, Electroencephalography and clinical neurophysiology.

[23]  L. Kaufman,et al.  Tonotopic organization of the human auditory cortex. , 1982, Science.

[24]  G. Romani,et al.  Neuromagnetic topography of photoconvulsive response in man. , 1990, Electroencephalography and clinical neurophysiology.

[25]  K. Abraham-Fuchs,et al.  Multichannel DC SQUID sensor array for biomagnetic applications , 1991 .

[26]  R. Hari,et al.  Neuromagnetic studies of somatosensory system: Principles and examples , 1985, Progress in Neurobiology.

[27]  G. Romani,et al.  Magnetic measurements and modelling for the investigation of the human-heart conduction system , 1983 .

[28]  John Clarke,et al.  Superconducting thin‐film gradiometer , 1978 .

[29]  D. Drung DC SQUID systems overview , 1991 .

[30]  D Lehmann,et al.  Spatial principal components of multichannel maps evoked by lateral visual half-field stimuli. , 1982, Electroencephalography and clinical neurophysiology.

[31]  Seppo P. Ahlfors,et al.  Large-area low-noise seven-channel dc SQUID magnetometer for brain research , 1987 .

[32]  R. Ilmoniemi,et al.  Selective localization of alpha brain activity with neuromagnetic measurements. , 1984, Electroencephalography and clinical neurophysiology.

[33]  D. Cohen A Shielded Facility for Low‐Level Magnetic Measurements , 1967 .

[34]  A clinical system for accurate assessment of tissue iron concentration , 1983 .

[35]  T. M. Klapwijk,et al.  Compact integrated dc SQUID gradiometer , 1982 .

[36]  R. McFee,et al.  DETECTION OF THE MAGNETIC FIELD OF THE HEART. , 1963, American heart journal.

[37]  J. E. Zimmerman,et al.  QUANTUM STATES AND TRANSITIONS IN WEAKLY CONNECTED SUPERCONDUCTING RINGS. , 1967 .

[38]  K. Lehnertz,et al.  Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. , 1988, Electroencephalography and clinical neurophysiology.

[39]  Matti Hämäläinen,et al.  Multichannel SQUID systems for brain research , 1991 .

[40]  W. Penfield The Cerebral Cortex of Man , 1950 .

[41]  K. Reinikainen,et al.  A four-channel SQUID magnetometer for brain research. , 1984, Electroencephalography and clinical neurophysiology.