A Bayesian MRF framework for labeling terrain using hyperspectral imaging

Studies of hyperspectral images point to non-Gaussian statistics of pixels values, and consequently, standard Gaussian models may not perform well in hyperspectral image analysis. This paper presents novel probability models that capture non-Gaussian statistics of hyperspectral images, and uses them in automated classification of terrain sites. After the data are preprocessed using standard dimension-reduction tools, we use: 1) a nonparametric density estimate for capturing spectral variation at each site and 2) two parametric families-generalized Laplacian and Bessel K form-to capture non-Gaussian statistics of difference pixels. Assuming an Ising-type prior on site labels, favoring a smooth classification, we formulate a Markov random field-maximum a posteriori estimation problem and use a Markov chain to estimate site classifications. Results are presented from application of this framework to Washington, DC Mall and Indian Springs rural area datasets.

[1]  D. Landgrebe,et al.  On the classification of classes with nearly equal spectral response in remote sensing hyperspectral image data , 1999, IEEE Trans. Geosci. Remote. Sens..

[2]  José M. F. Moura,et al.  Efficient detection in hyperspectral imagery , 2001, IEEE Trans. Image Process..

[3]  Qiong Jackson,et al.  An adaptive method for combined covariance estimation and classification , 2002, IEEE Trans. Geosci. Remote. Sens..

[4]  John A. Richards,et al.  Cluster-space representation for hyperspectral data classification , 2002, IEEE Trans. Geosci. Remote. Sens..

[5]  Gerhard Winkler,et al.  Image analysis, random fields and dynamic Monte Carlo methods: a mathematical introduction , 1995, Applications of mathematics.

[6]  Behzad M. Shahshahani,et al.  Using Partially Labeled Data For Normal Mixture Identification With Application To Class Definition , 1992, [Proceedings] IGARSS '92 International Geoscience and Remote Sensing Symposium.

[7]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[8]  Robert S. Rand,et al.  A spectral mixture process conditioned by Gibbs-based partitioning , 2001, IEEE Trans. Geosci. Remote. Sens..

[9]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[10]  Charles Kervrann,et al.  A Markov random field model-based approach to unsupervised texture segmentation using local and global spatial statistics , 1995, IEEE Trans. Image Process..

[11]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[12]  Dimitris G. Manolakis,et al.  Modeling hyperspectral imaging data , 2003, SPIE Defense + Commercial Sensing.

[13]  Wojciech Pieczynski,et al.  Estimation of Generalized Multisensor Hidden Markov Chains and Unsupervised Image Segmentation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Anuj Srivastava,et al.  Universal Analytical Forms for Modeling Image Probabilities , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Robert S. Rand,et al.  Spatially smooth partitioning of hyperspectral imagery using spectral/spatial measures of disparity , 2003, IEEE Trans. Geosci. Remote. Sens..

[16]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[17]  David A. Landgrebe,et al.  Supervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[18]  David A. Landgrebe,et al.  A model-based mixture-supervised classification approach in hyperspectral data analysis , 2002, IEEE Trans. Geosci. Remote. Sens..

[19]  Eero P. Simoncelli,et al.  On Advances in Statistical Modeling of Natural Images , 2004, Journal of Mathematical Imaging and Vision.

[20]  Anuj Srivastava,et al.  Probability Models for Clutter in Natural Images , 2001, IEEE Trans. Pattern Anal. Mach. Intell..