Exponential complexity and ontological theories of quantum mechanics

Ontological theories of quantum mechanics describe a single system by means of well-defined classical variables and attribute the quantum uncertainties to our ignorance about the underlying reality represented by these variables. We consider the general class of ontological theories describing a quantum system by a set of variables with Markovian (either deterministic or stochastic) evolution. We provide proof that the number of continuous variables cannot be smaller than 2N-2, N being the Hilbert-space dimension. Thus, any ontological Markovian theory of quantum mechanics requires a number of variables which grows exponentially with the physical size. This result is relevant also in the framework of quantum Monte Carlo methods.

[1]  Condition for any realistic theory of quantum systems. , 2006, Physical review letters.

[2]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[3]  David J Rowe,et al.  Many-body quantum mechanics as a symplectic dynamical system , 1980 .

[4]  Lucien Hardy,et al.  Quantum ontological excess baggage , 2004 .

[5]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[6]  F. Strocchi,et al.  COMPLEX COORDINATES AND QUANTUM MECHANICS , 1966 .

[7]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[8]  R. Spekkens Contextuality for preparations, transformations, and unsharp measurements , 2004, quant-ph/0406166.

[9]  Matthias Troyer,et al.  Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations , 2004, Physical review letters.

[10]  X. Oriols,et al.  Quantum-trajectory approach to time-dependent transport in mesoscopic systems with electron-electron interactions. , 2007, Physical review letters.

[11]  Alberto Montina,et al.  Exact BCS stochastic schemes for a time-dependent many-body fermionic system , 2006 .

[12]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[13]  A. Montina First-order coherence in an atomic condensate at finite temperature , 2003 .

[14]  N-boson time-dependent problem: A reformulation with stochastic wave functions , 2000, cond-mat/0003399.

[15]  F. Arecchi,et al.  Atomic density fluctuations in Bose-Einstein condensates , 2003 .

[16]  P D Drummond,et al.  Correlations in a BEC collision: first-principles quantum dynamics with 150,000 atoms. , 2007, Physical review letters.

[17]  N. Mermin Hidden variables and the two theorems of John Bell , 1993, 1802.10119.

[18]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[19]  N. Yoran,et al.  Classical simulation of limited-width cluster-state quantum computation. , 2006, Physical review letters.

[20]  S. Aaronson Quantum computing and hidden variables , 2004, quant-ph/0408035.

[21]  R. Graham,et al.  DYNAMICAL QUANTUM NOISE IN TRAPPED BOSE-EINSTEIN CONDENSATES , 1998 .

[22]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[23]  W. Melnitchouk,et al.  Quark-hadron duality and the nuclear EMC effect , 2001, nucl-th/0110071.

[24]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[25]  A. Montina Statistical representation of quantum states , 2007 .

[26]  Roderich Tumulka,et al.  Bohmian mechanics and quantum field theory. , 2003, Physical review letters.

[27]  R. Wyatt,et al.  Evolution of classical and quantum phase-space distributions: A new trajectory approach for phase space hydrodynamics , 2003 .

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  Heslot,et al.  Quantum mechanics as a classical theory. , 1985, Physical review. D, Particles and fields.