Step-by-Step Formation of Bus Admittance Matrix

An algorithm has been developed to form the bus admittance matrix Ybu,, by forming the network through a step-by- step addition of a line or a passive element to the system, taking into account the mutual coupling between the elements. Two sets of formulas have been derived for the addition of a tree branch and for the addition of a link. This method eliminates the formation of incidence matrices and does not require singular or nonsingular transformations. This algorithm is very convenient for calculation in digital computers.

[1]  D. K. Reitan,et al.  Modification of the bus impedance matrix for system changes involving mutual couplings , 1969 .

[2]  H. H. Happ Special Cases of Orthogonal Networks - Tree and Link , 1966 .

[3]  Gabriel Kron,et al.  Improved procedure for interconnecting piece-wise solutions , 1956 .

[4]  Ahmed H. El-Abiad,et al.  Digital Calculation of Line-to-Ground Short Circuits by Matrix Method , 1960, Transactions of the American Institute of Electrical Engineers Part III Power Apparatus and Systems.

[5]  J. B. Ward,et al.  Digital Computation of Driving Point and Transfer Impedances , 1957, Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems.

[6]  L. K. Kirchmayer,et al.  Digital Calculation of Network Impedances [includes discussion] , 1955, Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems.

[7]  J. C. Siegel,et al.  Nodal Representation of Large Complex-Element Networks Including Mutual Reactances , 1958, Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems.

[8]  N. Sato,et al.  Digital Calculation of Network Inverse and Mesh Transrormation Matrices , 1960, Transactions of the American Institute of Electrical Engineers Part III Power Apparatus and Systems.

[9]  H. H. Happ,et al.  Orthogonal Networks , 1966 .