Theoretical and Finite Element Analysis of Origami and Kirigami Based Structures

[1]  Spencer P. Magleby,et al.  Accommodating Thickness in Origami-Based Deployable Arrays , 2013 .

[2]  C. Santangelo,et al.  Programmed buckling by controlled lateral swelling in a thin elastic sheet. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  John A. Rogers,et al.  Mechanics of curvilinear electronics , 2010 .

[4]  R. Hayward,et al.  Designing Responsive Buckled Surfaces by Halftone Gel Lithography , 2012, Science.

[5]  Koryo Miura,et al.  Method of Packaging and Deployment of Large Membranes in Space , 1985 .

[6]  Lallit Anand,et al.  A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: Application to thermally responsive gels , 2011 .

[7]  Janine Kavanagh,et al.  Gelatine as a crustal analogue: Determining elastic properties for modelling magmatic intrusions , 2013 .

[8]  Zhigang Suo,et al.  A finite element method for transient analysis of concurrent large deformation and mass transport in gels , 2009 .

[9]  Hanqing Jiang,et al.  Archimedean spiral design for extremely stretchable interconnects , 2014 .

[10]  J. Vanfleteren,et al.  Design and Manufacturing of Stretchable High-Frequency Interconnects , 2008, IEEE Transactions on Advanced Packaging.

[11]  J. Vanfleteren,et al.  Polyimide-Enhanced Stretchable Interconnects: Design, Fabrication, and Characterization , 2011, IEEE Transactions on Electron Devices.

[12]  I. F. Bainbridge,et al.  The Surface Tension of Pure Aluminum and Aluminum Alloys , 2013, Metallurgical and Materials Transactions A.

[13]  Z. Suo,et al.  Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load , 2009 .

[14]  John A Rogers,et al.  Stretchable, Curvilinear Electronics Based on Inorganic Materials , 2010, Advanced materials.

[15]  Z. Suo,et al.  A theory of coupled diffusion and large deformation in polymeric gels , 2008 .

[16]  Thomas C. Hull,et al.  Modelling the folding of paper into three dimensions using affine transformations , 2002 .

[17]  K. Bathe Finite Element Procedures , 1995 .

[18]  Tomohiro Tachi,et al.  Rigid-Foldable Thick Origami , 2010 .

[19]  Zhigang Suo,et al.  Formation of creases on the surfaces of elastomers and gels , 2009 .

[20]  Tomohiro Tachi,et al.  Programming curvature using origami tessellations. , 2016, Nature materials.

[21]  Manuel Quesada-Pérez,et al.  Gel swelling theories: the classical formalism and recent approaches , 2011 .

[22]  M. Dickey,et al.  Self-folding of polymer sheets using local light absorption , 2012 .

[23]  R. Hayward,et al.  Thermally responsive rolling of thin gel strips with discrete variations in swelling , 2012 .

[24]  L. Mahadevan,et al.  Confined developable elastic surfaces: cylinders, cones and the Elastica , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  Bong Hoon Kim,et al.  Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. , 2011, Nano letters.

[26]  Candace K. Chan,et al.  Origami lithium-ion batteries , 2014, Nature Communications.

[27]  Rui Huang,et al.  A Variational Approach and Finite Element Implementation for Swelling of Polymeric Hydrogels Under Geometric Constraints , 2010 .

[28]  Alireza Karimi,et al.  An experimental study on the elastic modulus of gelatin hydrogels using different stress–strain definitions , 2014 .

[29]  Sanat S Bhole,et al.  Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin , 2014, Science.

[30]  Levi H. Dudte,et al.  Geometric mechanics of curved crease origami. , 2012, Physical review letters.

[31]  Leonid Ionov,et al.  Soft microorigami: self-folding polymer films , 2011 .

[32]  W. D. Callister,et al.  Fundamentals of Materials Science and Engineering , 2004 .

[33]  H Tanaka,et al.  Programmable matter by folding , 2010, Proceedings of the National Academy of Sciences.

[34]  Yonggang Huang,et al.  Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations , 2008, Proceedings of the National Academy of Sciences.

[35]  George M. Whitesides,et al.  A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom , 2016, Nature Communications.

[36]  Thomas C. Hull,et al.  Using origami design principles to fold reprogrammable mechanical metamaterials , 2014, Science.

[37]  Mark Schenk,et al.  Geometry of Miura-folded metamaterials , 2013, Proceedings of the National Academy of Sciences.

[38]  K. Kuribayashi,et al.  Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil , 2006 .

[39]  R. Lang Origami Design Secrets: Mathematical Methods for an Ancient Art , 2003 .

[40]  G. Whitesides,et al.  Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). , 1998, Analytical chemistry.

[41]  Bart Vandevelde,et al.  Design of Metal Interconnects for Stretchable Electronic Circuits using Finite Element Analysis , 2007, 2007 International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems. EuroSime 2007.

[42]  Jonathan A. Fan,et al.  Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems , 2013, Nature Communications.

[43]  John A Rogers,et al.  Controlled buckling of semiconductor nanoribbons for stretchable electronics , 2006, Nature nanotechnology.

[44]  H. Rix,et al.  The James Webb Space Telescope , 2006, astro-ph/0606175.

[45]  Huanyu Cheng,et al.  A Physically Transient Form of Silicon Electronics , 2012, Science.

[46]  Goran Konjevod,et al.  Origami based Mechanical Metamaterials , 2014, Scientific Reports.

[47]  Tomohiro Tachi,et al.  Simulation of Rigid Origami , 2006 .

[48]  Levi H. Dudte,et al.  Geometric mechanics of periodic pleated origami. , 2012, Physical review letters.

[49]  Yonggang Huang,et al.  Controlled Mechanical Buckling for Origami‐Inspired Construction of 3D Microstructures in Advanced Materials , 2016, Advanced functional materials.

[50]  M. Dunn,et al.  Photo-origami—Bending and folding polymers with light , 2012 .

[51]  Christian D. Santangelo,et al.  The shape and mechanics of curved-fold origami structures , 2012, 1210.0778.

[52]  T. Anderson,et al.  Fracture mechanics - Fundamentals and applications , 2017 .

[53]  Thomas C. Hull,et al.  Origami structures with a critical transition to bistability arising from hidden degrees of freedom. , 2015, Nature materials.

[54]  Ha Uk Chung,et al.  Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling , 2015, Science.

[55]  F Lechenault,et al.  Generic Bistability in Creased Conical Surfaces. , 2015, Physical review letters.

[56]  Yonggang Huang,et al.  A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes , 2015, Proceedings of the National Academy of Sciences.