Femtomolar Sensitivity of Metalloregulatory Proteins Controlling Zinc Homeostasis

Intracellular zinc is thought to be available in a cytosolic pool of free or loosely bound Zn(II) ions in the micromolar to picomolar range. To test this, we determined the mechanism of zinc sensors that control metal uptake or export in Escherichia coli and calibrated their response against the thermodynamically defined free zinc concentration. Whereas the cellular zinc quota is millimolar, free Zn(II) concentrations that trigger transcription of zinc uptake or efflux machinery are femtomolar, or six orders of magnitude less than one atom per cell. This is not consistent with a cytosolic pool of free Zn(II) and suggests an extraordinary intracellular zinc-binding capacity. Thus, cells exert tight control over cytosolic metal concentrations, even for relatively low-toxicity metals such as zinc.

[1]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[2]  F. Neidhart Escherichia coli and Salmonella. , 1996 .

[3]  T. E. Moore,et al.  Sexual Selection and Reproductive Competition in Insects , 1979 .

[4]  K. Hantke,et al.  The ZnuABC high‐affinity zinc uptake system and its regulator Zur in Escherichia coli , 1998, Molecular microbiology.

[5]  S. Ueda,et al.  Growth Phase-Dependent Variation in Protein Composition of the Escherichia coli Nucleoid , 1999, Journal of bacteriology.

[6]  T. Åkerlund,et al.  Analysis of cell size and DNA content in exponentially growing and stationary-phase batch cultures of Escherichia coli , 1995, Journal of bacteriology.

[7]  C. Fahrni,et al.  The chemical cell biology of zinc: structure and intracellular fluorescence of a zinc-quinolinesulfonamide complex , 1999, JBIC Journal of Biological Inorganic Chemistry.

[8]  B. Vallee,et al.  Zinc: biochemistry, physiology, toxicology and clinical pathology. , 1988, BioFactors.

[9]  M. R. Binet,et al.  Cd(II), Pb(II) and Zn(II) ions regulate expression of the metal‐transporting P‐type ATPase ZntA in Escherichia coli , 2000, FEBS letters.

[10]  A. C. Adams,et al.  The cyanobacterial repressor SmtB is predominantly a dimer and binds two Zn2+ ions per subunit. , 1997, Biochemistry.

[11]  J. Berg,et al.  The Galvanization of Biology: A Growing Appreciation for the Roles of Zinc , 1996, Science.

[12]  K. Hantke,et al.  The Zinc-responsive Regulator Zur and Its Control of theznu Gene Cluster Encoding the ZnuABC Zinc Uptake System in Escherichia coli * , 2000, The Journal of Biological Chemistry.

[13]  D. Eide,et al.  Zap1p, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in Saccharomyces cerevisiae , 1997, Molecular and cellular biology.

[14]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[15]  C. Rensing,et al.  Families of Soft-Metal-Ion-Transporting ATPases , 1999, Journal of bacteriology.

[16]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[17]  N. M. Price,et al.  The importance of siderophores in iron nutrition of heterotrophic marine bacteria , 1999 .

[18]  N. Robinson,et al.  An SmtB-like repressor from Synechocystis PCC 6803 regulates a zinc exporter. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[19]  N. Brown,et al.  ZntR is a Zn(II)‐responsive MerR‐like transcriptional regulator of zntA in Escherichia coli , 1999, Molecular microbiology.

[20]  Denise Grady Quick-Change Pathogens Gain an Evolutionary Edge , 1996, Science.

[21]  R. Palmiter,et al.  Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. , 1995, The EMBO journal.

[22]  F. Neidhardt,et al.  Physiology of the bacterial cell : a molecular approach , 1990 .

[23]  G. Kerchner,et al.  Measurement of Intracellular Free Zinc in Living Cortical Neurons: Routes of Entry , 1997, The Journal of Neuroscience.

[24]  R. J. Williams,et al.  The distribution of elements in cells , 2000 .

[25]  S. Chakrabarti,et al.  ZntR is an autoregulatory protein and negatively regulates the chromosomal zinc resistance operon znt of Staphylococcus aureus , 1999, Molecular microbiology.

[26]  N. Robinson,et al.  Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions , 1993, Molecular microbiology.

[27]  D. Giedroc,et al.  The zinc metalloregulatory protein Synechococcus PCC7942 SmtB binds a single zinc ion per monomer with high affinity in a tetrahedral coordination geometry. , 2000, Biochemistry.

[28]  J. Helmann,et al.  Identification of a Zinc-Specific Metalloregulatory Protein, Zur, Controlling Zinc Transport Operons inBacillus subtilis , 1998, Journal of bacteriology.