PHYSICOCHEMICAL PROPERTIES OF NICKEL COPPER SULFATE SOLUTIONS

Abstract Density and viscosity measurements were performed in electrolytes of compositions commonly used in industry for electrorefining and electrowinning of copper at several temperatures and nickel concentrations. It was found that nickel increased the density and viscosity of the electrolytes. The diffusion coefficient of Cu2+ in the same electrolytes was also determined using a rotating disk electrode (RDE). The average diffusion coefficient of copper ions for electrolytes containing 160 g.L-1 sulphuric acid and 40 g.L-1 copper ion was found to be 10.4 × 10-6 cm2 .s-1 and 23.5 × 10-6 cm2.s-1, at 20 and 60 °C, respectively. The presence of nickelions in the electrolyte reduced the copper diffusion coefficient. The activation energies for the viscosity and the diffusion processes were determined in the temperature range of 20 to 60 °C. Thermodynamic modelling of the viscosity and diffusion processes is presented. On a effectué des mesures de densité et de viscosité d’électrolytes de compositions utilisées communément dans l’industrie pour le raffinage et l’extraction électrolytiques du cuivre à plusieurs températures et plusieurs concentrations de nickel. On a trouvé que le nickel augmentait la densité et la viscosité des électrolytes. On a également déterminé le coefficient de diffusion du Cu2+ dans les mêmes électrolytes en utilisant une électrode à disque rotatif. On a trouvé que le coefficient moyen de diffusion d’ions de cuivre d’électrolytes contenant 160 g·L-1 d’acide sulfurique et 40 g·L-1 d’ions de cuivre était de 10.4 × 10-6 cm2·s-1 et de 23.5 × 10-6 cm2·s-1 à 20 °C et 60 °C, respectivement. La présence d’ions de nickel dans l’électrolyte réduisait le coefficient de diffusion du cuivre. On a déterminé les énergies d’activation pour la viscosité et les procédés de diffusion dans une gamme de température de 20 à 60 °C. On présente la modélisation thermodynamique de la viscosité et des procédés de diffusion.

[1]  F. Habashi Extractive Metallurgy of Copper , 1996 .

[2]  J. Dutrizac,et al.  A Mineralogical overview of the behavior of nickel during copper electrorefining , 1990 .

[3]  T. Subbaiah,et al.  Physico-chemical properties of copper electrolytes , 1989 .

[4]  T. I. Quickenden,et al.  The diffusion coefficient of copper sulphate in aqueous solution , 1984 .

[5]  B. Burrows,et al.  Anode Passivation in Copper Refining , 1980 .

[6]  William G. Davenport,et al.  Densities, electrical conductivities and viscosities of CuSO4/H2SO4 solutions in the range of modern electrorefining and electrowinning electrolytes , 1980 .

[7]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[8]  J. A. Harrison,et al.  The deposition of copper , 1975 .

[9]  Julian L. Roberts,et al.  Experimental Electrochemistry for Chemists , 1974 .

[10]  W. Hahn,et al.  Diffusion Coefficients and Kinetic Parameters in Copper Sulfate Electrolytes and in Copper Fluoborate Electrolytes Containing Organic Addition Agents , 1973 .

[11]  A. Arvia,et al.  Electrochemical study of the diffusion of cupric ion in aqueous and aqueous-glycerol solutions containing sulphuric acid , 1966 .

[12]  A. Arvia,et al.  Ionic mass transfer in the electrolysis of flowing solutions. The electrodeposition of copper under mass-transfer control on tubular electrodes. , 1964 .

[13]  C. Tobias,et al.  Correlation of Limiting Currents under Free Convection Conditions , 1953 .

[14]  J. D. Peterson,et al.  The Diffusion Coefficient of Cupric Sulfate from 0.0 to 0.35 Molar at 25°C. , 1942 .

[15]  A. Gordon,et al.  The Diffusion of Copper Sulfate in Aqueous Solutions of Sulfuric Acid , 1935 .