Performance of Johnson-Lindenstrauss transform for k-means and k-medians clustering
暂无分享,去创建一个
Konstantin Makarychev | Yury Makarychev | Ilya P. Razenshteyn | Ilya Razenshteyn | K. Makarychev | Yury Makarychev
[1] Dimitris Achlioptas,et al. Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..
[2] Tamás Sarlós,et al. Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[3] Anirban Dasgupta,et al. A sparse Johnson: Lindenstrauss transform , 2010, STOC '10.
[4] Anil K. Jain. Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..
[5] W. B. Johnson,et al. Extensions of Lipschitz mappings into Hilbert space , 1984 .
[6] Noga Alon,et al. Problems and results in extremal combinatorics--I , 2003, Discret. Math..
[7] Rachel Ward,et al. New and Improved Johnson-Lindenstrauss Embeddings via the Restricted Isometry Property , 2010, SIAM J. Math. Anal..
[8] Nir Ailon,et al. Fast Dimension Reduction Using Rademacher Series on Dual BCH Codes , 2008, SODA '08.
[9] Kasper Green Larsen,et al. Optimality of the Johnson-Lindenstrauss Lemma , 2016, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).
[10] M. D. Kirszbraun. Über die zusammenziehende und Lipschitzsche Transformationen , 1934 .
[11] P. Massart,et al. Adaptive estimation of a quadratic functional by model selection , 2000 .
[12] Nariman Farvardin,et al. A study of vector quantization for noisy channels , 1990, IEEE Trans. Inf. Theory.
[13] Piotr Indyk,et al. Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.
[14] Christos Boutsidis,et al. Random Projections for $k$-means Clustering , 2010, NIPS.
[15] Dan Feldman,et al. Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering , 2013, SODA.
[16] Christos Boutsidis,et al. Randomized Dimensionality Reduction for $k$ -Means Clustering , 2011, IEEE Transactions on Information Theory.
[17] Bernard Chazelle,et al. Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform , 2006, STOC '06.
[18] Alan M. Frieze,et al. Clustering in large graphs and matrices , 1999, SODA '99.
[19] Fabrizio Grandoni,et al. Oblivious dimension reduction for k-means: beyond subspaces and the Johnson-Lindenstrauss lemma , 2019, STOC.
[20] Assaf Naor,et al. Metric dimension reduction: A snapshot of the Ribe program , 2018, Proceedings of the International Congress of Mathematicians (ICM 2018).
[21] Daniel M. Kane,et al. Sparser Johnson-Lindenstrauss Transforms , 2010, JACM.
[22] Michael B. Cohen,et al. Dimensionality Reduction for k-Means Clustering and Low Rank Approximation , 2014, STOC.
[23] Cordelia Schmid,et al. Product Quantization for Nearest Neighbor Search , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[24] Christos Boutsidis,et al. Unsupervised Feature Selection for the $k$-means Clustering Problem , 2009, NIPS.
[25] Sanjoy Dasgupta,et al. An elementary proof of a theorem of Johnson and Lindenstrauss , 2003, Random Struct. Algorithms.
[26] M. Sion. On general minimax theorems , 1958 .
[27] S. P. Lloyd,et al. Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.
[28] Nir Ailon,et al. An almost optimal unrestricted fast Johnson-Lindenstrauss transform , 2010, SODA '11.
[29] Christos Boutsidis,et al. Deterministic Feature Selection for K-Means Clustering , 2011, IEEE Transactions on Information Theory.
[30] M. Talagrand,et al. Probability in Banach Spaces: Isoperimetry and Processes , 1991 .
[31] David P. Woodruff,et al. Optimal Approximate Matrix Product in Terms of Stable Rank , 2015, ICALP.
[32] Roman Vershynin,et al. High-Dimensional Probability , 2018 .
[33] David P. Woodruff,et al. Strong Coresets for k-Median and Subspace Approximation: Goodbye Dimension , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).
[34] Mary Wootters,et al. New constructions of RIP matrices with fast multiplication and fewer rows , 2012, SODA.
[35] S. Mendelson,et al. Empirical processes and random projections , 2005 .