Optimal deterministic routing and sorting on the congested clique

Consider a clique of <i>n</i> nodes, where in each synchronous round each pair of nodes can exchange <i>O(log n)</i> bits. We provide deterministic constant-time solutions for two problems in this model. The first is a routing problem where each node is source and destination of <i>n</i> messages of size <i>O(log n)</i>. The second is a sorting problem where each node <i>i</i> is given <i>n</i> keys of size <i>O(log n)</i> and needs to receive the <i>i<sup>th</sup></i> batch of <i>n</i> keys according to the global order of the keys. The latter result also implies deterministic constant-round solutions for related problems such as selection or determining modes.

[1]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[2]  Moni Naor,et al.  A Lower Bound on Probabilistic Algorithms for Distributive Ring Coloring , 1991, SIAM J. Discret. Math..

[3]  Nathan Linial,et al.  Locality in Distributed Graph Algorithms , 1992, SIAM J. Comput..

[4]  David Peleg,et al.  A near-tight lower bound on the time complexity of distributed MST construction , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[5]  Michael T. Goodrich,et al.  Communication-Efficient Parallel Sorting , 1999, SIAM J. Comput..

[6]  David Peleg,et al.  A Near-Tight Lower Bound on the Time Complexity of Distributed Minimum-Weight Spanning Tree Construction , 2000, SIAM J. Comput..

[7]  Richard Cole,et al.  Edge-Coloring Bipartite Multigraphs in O(E logD) Time , 1999, Comb..

[8]  Boaz Patt-Shamir,et al.  Distributed MST for constant diameter graphs , 2001, PODC '01.

[9]  Michael Elkin An Unconditional Lower Bound on the Time-Approximation Trade-off for the Distributed Minimum Spanning Tree Problem , 2006, SIAM J. Comput..

[10]  Distributed verification and hardness of distributed approximation , 2010, STOC '11.

[11]  Roger Wattenhofer,et al.  Tight bounds for parallel randomized load balancing: extended abstract , 2011, STOC '11.

[12]  Boaz Patt-Shamir,et al.  The round complexity of distributed sorting: extended abstract , 2011, PODC '11.

[13]  Jane Zundel MATCHING THEORY , 2011 .

[14]  Roger Wattenhofer,et al.  Networks cannot compute their diameter in sublinear time , 2012, SODA.

[15]  Christoph Lenzen,et al.  "Tri, Tri Again": Finding Triangles and Small Subgraphs in a Distributed Setting - (Extended Abstract) , 2012, DISC.

[16]  Christoph Lenzen,et al.  Tight bounds for parallel randomized load balancing , 2011, Distributed Computing.