Divisibility theory in commutative rings: Bezout monoids

A ubiquitous class of lattice ordered semigroups introduced by Bosbach, which we call Bezout monoids, seems to be the appropriate structure for the study of divisibility in various classical rings like GCD domains (including UFD’s), rings of low dimension (including semi-hereditary rings), as well as certain subdirect products of such rings and certain factors of such subdirect products. A Bezout monoid is a commutative monoid S with 0 such that under the natural partial order (for a, b ∈ S, a ≤ b ∈ S ⟺ bS ⊆ aS), S is a distributive lattice, multiplication is distributive over both meets and joins, and for any x, y ∈ S, if d = x ∧ y and dx1 = x then there is a y1 ∈ S with dy1 = y and x1 ∧ y1 = 1. We investigate Bezout monoids by using filters and m-prime filters, and describe all homorphisms between them. We also prove analogues of the Pierce and the Grothendieck sheaf representations of rings for Bezout monoids. The question whether Bezout monoids describe divisibility in Bezout rings (rings whose finitely generated ideals are principal) is still open.

[1]  D. D. Anderson,et al.  Multiplication Ideals, Multiplication Rings, and the Ring R(X) , 1976, Canadian Journal of Mathematics.

[2]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .

[3]  Eben Matlis,et al.  The minimal prime spectrum of a reduced ring , 1983 .

[4]  R. P. Dilworth Abstract commutative ideal theory. , 1962 .

[5]  Bo Stenström,et al.  Rings of Quotients: An Introduction to Methods of Ring Theory , 1975 .

[6]  M. Stone Applications of the theory of Boolean rings to general topology , 1937 .

[7]  B. Bosbach Archimedan Prüfer Structures Alias Filter Archimedean d-Semigroups , 2002 .

[8]  R. Pierce Modules over Commutative Regular Rings , 1967 .

[9]  D. D. Anderson Abstract commutative ideal theory without chain condition , 1976 .

[10]  Max D. Larsen,et al.  Elementary divisor rings and finitely presented modules , 1974 .

[11]  Bruno Bosbach Komplementäre Halbgruppen. Axiomatik und Arithmetik , 1969 .

[12]  W. Stephenson Modules Whose Lattice of Submodules is Distributive , 1974 .

[13]  J. Ohm Semi-Valuations and Groups of Divisibility , 1969, Canadian Journal of Mathematics.

[14]  M. Siddoway,et al.  DIVISIBILITY THEORY OF SEMI-HEREDITARY RINGS , 2010 .

[15]  M. Henriksen Some remarks on elementary divisor rings. II. , 1955 .

[16]  Irving Kaplansky,et al.  Elementary divisors and modules , 1949 .

[17]  C. U. Jensen Arithmetical rings , 1966 .

[18]  L. Fuchs Über die Ideale arithmetischer Ringe , 1949 .

[19]  M. Henriksen,et al.  Some Remarks About Elementary Divisor Rings , 1956 .

[20]  T. Shores,et al.  Rings whose finitely generated modules are direct sums of cyclics , 1974 .

[21]  R. Gilmer,et al.  Multiplicative ideal theory , 1968 .

[22]  P. Lorenzen,et al.  Abstrakte Begründung der multiplikativen Idealtheorie , 1939 .

[23]  L. Fuchs Modules over valuation domains , 1985 .

[24]  D. Rees,et al.  Lecons sur la Theorie des Treillis des Structures Algebriques Ordonnees et des Treillis Geometriques , 1955 .

[25]  Max D. Larsen,et al.  Multiplicative theory of ideals , 1973 .

[26]  R. P. Dilworth,et al.  Residuated Lattices. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[27]  T. Shores On generalized valuation rings. , 1975 .

[28]  B. Bosbach Ideal Divisibility Monoids , 2002 .

[29]  Klaus Keimel Darstellung von Halbgruppen und universellen Algebren durch Schnitte in Garben; bireguläre Halbgruppen , 1970 .

[30]  H. Subramanian On theory of x-ideals , 1969 .

[31]  Zur Theorie der Teilbarkeitshalbgruppen , 1971 .

[32]  M. Henriksen,et al.  Rings of continuous functions in which every finitely generated ideal is principal , 1956 .

[33]  B. Bosbach Representable divisibility semigroups , 1991, Proceedings of the Edinburgh Mathematical Society.

[34]  P. Jaffard Les systèmes d'idéaux , 1961 .

[35]  A. H. Clifford,et al.  Naturally Totally Ordered Commutative Semigroups , 1954 .