Fully guided-wave photon pair source for quantum applications

We report a fully guided-wave source of polarisation entangled photons based on a periodically poled lithium niobate waveguide mounted in a Sagnac interferometer. We demonstrate the source's quality by converting polarisation entanglement to postselection-free energy-time entanglement for which we obtain a near-optimal S-parameter of 2.75 ± 0.02, i.e. a violation of the Bell inequality by more than 35 standard deviations. The exclusive use of guided-wave components makes our source compact and stable which is a prerequisite for increasingly complex quantum applications. Additionally, our source offers a great versatility in terms of photon pair emission spectrum and generated quantum state, making it suitable for a broad range of quantum applications such as cryptography and metrology. In this sense, we show how to use our source for chromatic dispersion measurements in optical fibres which opens new avenues in the field of quantum metrology.

[1]  J. Brendel,et al.  Experimental Test of Bell's Inequality for Energy and Time , 1992 .

[2]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[3]  Jozef Gruska,et al.  Quantum Computing , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[4]  Nicolas Gisin,et al.  High coherence photon pair source for quantum communication , 2007, 0710.1143.

[5]  Generation of highly stable WDM time-bin entanglement by cascaded sum-frequency generation and spontaneous parametric downconversion in a PPLN waveguide device. , 2016, Optics express.

[6]  H. Tsuchida,et al.  Generation of polarization-entangled photon pairs in 1550nm band by a fiber-optic two-photon interferometer , 2004 .

[7]  Wei Zhang,et al.  Generation of hyper-entanglement on polarization and energy-time based on a silicon micro-ring cavity. , 2015, Optics express.

[8]  Thomas Jennewein,et al.  Generating polarization-entangled photon pairs using cross-spliced birefringent fibers. , 2012, Optics express.

[9]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[10]  Polarisation-entangled photon-pair source at 1550nm using 1 mm-long PPLN waveguide in fibre-loop configuration , 2007 .

[11]  T. Hosaka,et al.  Polarization-dependent chromatic dispersion in birefringent optical fibers. , 1987, Optics letters.

[12]  Djeylan Aktas,et al.  Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography , 2016, 1601.02402.

[13]  Kyo Inoue,et al.  Generation of pulsed polarization-entangled photon pairs in a 1.55-microm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit. , 2005, Optics letters.

[14]  Nicolas Gisin,et al.  Measurement of chromatic dispersion in optical fibers using pairs of correlated photons , 1998 .

[15]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[16]  A. Poppe,et al.  Demonstration of active routing of entanglement in a multi-user network. , 2013, Optics express.

[17]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[18]  O. Alibart,et al.  Polarization entangled photon-pair source based on quantum nonlinear photonics and interferometry , 2014, 1403.8026.

[19]  Tommaso Lunghi,et al.  Quantum photonics at telecom wavelengths based on lithium niobate waveguides , 2016, 1608.01100.

[20]  S. Arahira,et al.  Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ2 processes in a periodically poled LiNbO3 ridge waveguide. , 2011, Optics express.

[21]  Joshua A. Slater,et al.  Flexible source of nondegenerate entangled photons based on a two-crystal Sagnac interferometer , 2013, 1305.0986.

[22]  O. Alibart,et al.  A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength , 2010 .

[23]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[24]  Shih,et al.  Postselection-free energy-time entanglement. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[25]  Franson,et al.  Bell inequality for position and time. , 1989, Physical review letters.

[26]  Christine Silberhorn,et al.  An efficient integrated two-color source for heralded single photons , 2012, 1211.3960.

[28]  N. Gisin,et al.  PPLN waveguide for quantum communication , 2001, quant-ph/0107125.

[29]  Paul G. Kwiat,et al.  Hyper-entangled states , 1997 .

[30]  R. Hadfield Single-photon detectors for optical quantum information applications , 2009 .

[31]  Jie Chen,et al.  Active polarization stabilization in optical fibers suitable for quantum key distribution. , 2007, Optics express.

[32]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[33]  Generation of Polarization-Entangled Photons by Type-II Quasi-Phase-Matched Waveguide Nonlinear-Optic Device , 2007, IEEE Photonics Technology Letters.

[34]  Akio Yoshizawa,et al.  Wavelength-multiplexed entanglement distribution , 2010 .

[35]  Weinfurter,et al.  Quantum cryptography with entangled photons , 1999, Physical review letters.

[36]  K. Sanaka,et al.  New high-efficiency source of photon pairs for engineering quantum entanglement. , 2001, Physical review letters.

[37]  Toshiaki Suhara,et al.  Generation of quantum‐entangled twin photons by waveguide nonlinear‐optic devices , 2009 .

[38]  J G Rarity,et al.  Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm. , 2009, Optics express.

[39]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[40]  Wolfgang Tittel,et al.  Photonic entanglement for fundamental tests and quantum communication , 2001, Quantum Inf. Comput..

[41]  N. Gisin,et al.  Quantum cryptography , 1998 .

[42]  Sébastien Tanzilli,et al.  Ultra‐fast heralded single photon source based on telecom technology , 2014, 1412.5427.

[43]  Ou,et al.  Observation of nonlocal interference in separated photon channels. , 1990, Physical review letters.

[44]  Generation of polarization-entangled photon pairs using periodically poled lithium niobate waveguides in a fiber loop , 2007, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[45]  Jeremy L O'Brien,et al.  Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source. , 2007, Physical review letters.

[46]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[47]  Akio Yoshizawa,et al.  Broadband source of telecom-band polarization-entangled photon-pairs for wavelength-multiplexed entanglement distribution. , 2008, Optics express.

[48]  J. P. von der Weid,et al.  Full polarization control for fiber optical quantum communication systems using polarization encoding. , 2008, Optics express.

[49]  Eleni Diamanti,et al.  Multi-user quantum key distribution with entangled photons from an AlGaAs chip , 2016, 1607.01693.

[50]  A. Steane Quantum Computing , 1997, quant-ph/9708022.

[51]  Paul L Voss,et al.  Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. , 2004, Physical review letters.

[52]  D. Ostrowsky,et al.  On the genesis and evolution of Integrated Quantum Optics , 2011, 1108.3162.