Syndiospecific polymerization of styrene catalyzed by CpTiCl2(OR) complexes

Five new CpTiCl2(OR) alkoxyl-substituted half-sandwich complexes, where R was methoxyethyl (1), methoxypropyl (2), methoxyisopropyl (3), o-methoxyphenyl (4), or tetrahydrofurfuryl (5), were synthesized, characterized, and tested as catalyst precursors for the syndiospecific polymerization of styrene. These precursors were more active than (η5-cyclopentadienyl)trichlorotitanium (CpTiCl3). The different structures of the alkoxyl ligands affected the activity slightly. When the polymerization was carried out in bulk, all the complexes (1–5) exhibited high activities, even at the low molar ratio of Al/Ti = 300. The syndiotactic polystyrene (s-PS) percentage of the polymer produced by alkoxyl-substituted complexes was much higher than that of CpTiCl3. The really active center might be described as [CpTiMe]+ · [MAOX]− · nMAO (where MAO is methylaluminoxane). The normal active species [CpTiMe]+ made up the core and the anion mass [MAOX]− · nMAO surrounded the core and constituted the outer shell circumstance. They activated the syndiospecific polymerization of styrene as a whole. For a high concentration of MAO, the function of the alkoxyl group was weak because of the limited proportion in the outer shell. For a low concentration of MAO, the proportion of alkoxyl ligands in the outer shell increased greatly, and their influence also became significant, as reflected in a higher s-PS percentage of the obtained polymer. The existence of the additional oxygen atom in the alkoxyl ligand stabilized the active species more effectively; this was reflected in the higher temperature of the maximum activities. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1817–1824, 2001

[1]  Jianfei Liu,et al.  Syndiotactic polymerization of styrene with CpTiCl2(OR)/MAO system , 2000 .

[2]  E. Ruckenstein,et al.  Syndiospecific polymerization of styrene using fluorinated indenyltitanium complexes , 1999 .

[3]  A. Chan,et al.  Syndiotactic polymerization of styrene with half-sandwich titanocenes , 1999 .

[4]  Hcl Erik Abbenhuis,et al.  Half-sandwich titanium complexes stabilized by a novel silsesquioxane ligand; Soluble model systems for silica-grafted olefin polymerization catalysts , 1998 .

[5]  J. Chien,et al.  Oxidation States of Active Species for Syndiotactic-Specific Polymerization of Styrene , 1998 .

[6]  F. Laschi,et al.  Reactivity of the [(η5-C5Me5)TiCH3][RB(C6F5)3] Complexes Identified as Active Species in Syndiospecific Styrene Polymerization , 1998 .

[7]  J. Chien,et al.  PENDENT AMINOALKYL-SUBSTITUTED MONOCYCLOPENTADIENYLTITANIUM COMPOUNDS AND THEIR POLYMERIZATION BEHAVIOR , 1998 .

[8]  J. C. Flores,et al.  Binuclear monoindenyl–titanium(IV) complexes. Synthesis and styrene polymerization catalysis , 1998 .

[9]  Yongqiang Zhang,et al.  SILOXY-SUBSTITUTED TETRAMETHYLCYCLOPENTADIENYL AND INDENYL TRICHLOROTITANIUM COMPLEXES FOR SYNDIOSPECIFIC POLYMERIZATION OF STYRENE , 1998 .

[10]  Guangxue Xu Cationic Titanocene Catalysts for Syndiospecific Polymerization of Styrene , 1998 .

[11]  W. Kaminsky,et al.  Fluorinated Half-Sandwich Complexes as Catalysts in Syndiospecific Styrene Polymerization , 1997 .

[12]  Qing Wu,et al.  Syndiotactic polymerization of styrene with cyclopentadienyltribenzyloxytitanium/methylaluminoxane catalyst , 1997 .

[13]  A. Grassi,et al.  Syndiospecific styrene polymerization promoted by half-titanocene catalysts : A kinetic investigation providing a closer insight to the active species , 1997 .

[14]  A. Chan,et al.  A Catalyst for Syndiotactic Polymerization of Styrene , 1997 .

[15]  N. Veldman,et al.  Synthesis and X-ray crystal structure of 2-(methoxymethyl) phenyldicyclopentadienyltitanium(III) , 1997 .

[16]  H. Brintzinger,et al.  Cyclopenta[l]phenanthrene titanium trichloride derivatives : syntheses, crystal structure and properties as catalysts for styrene polymerization , 1997 .

[17]  Y. Do,et al.  Synthesis and polymerization behavior of various substituted indenyl titanium complexes as catalysts for syndiotactic polystyrene , 1997 .

[18]  Walter Kaminsky,et al.  New polymers by metallocene catalysis , 1996 .

[19]  A. Chan,et al.  Syndiotactic polymerization of styrene with CpTiCl2(OPri)/methylaluminoxane , 1996 .

[20]  J. C. Flores,et al.  [1-(2-Phenylethyl)-2,3,4,5-tetramethylcyclopentadienyl]- titanium Compounds. Synthesis and Their Use for the Syndiospecific Polymerization of Styrene , 1996 .

[21]  D. Haddleton,et al.  Synthesis and Mechanism of Formation of Syndiotactic Polystyrene Using a (tert-Butylcyclopentadienyl)titanium Complex , 1996 .

[22]  J. Chien,et al.  ALKYL-SUBSTITUTED INDENYL TITANIUM PRECURSORS FOR SYNDIOSPECIFIC ZIEGLER-NATTA POLYMERIZATION OF STYRENE , 1996 .

[23]  J. Chien,et al.  Highly Stable Catalysts for the Stereospecific Polymerization of Styrene , 1996 .

[24]  D. Gillis,et al.  Ethylene, Styrene, and α-Methylstyrene Polymerization by Mono(pentamethylcyclopentadienyl) (Cp*) Complexes of Titanium, Zirconium, and Hafnium: Roles of Cationic Complexes of the Type [Cp*MR2]+ (R = Alkyl) as both Coordination Polymerization Catalysts and Carbocationic Polymerization Initiators , 1996 .

[25]  R. Po',et al.  Synthesis of syndiotactic polystyrene: Reaction mechanisms and catalysis , 1996 .

[26]  F. Laschi,et al.  Reductive Decomposition of Cationic Half-Titanocene(IV) Complexes, Precursors of the Active Species in Syndiospecific Styrene Polymerization , 1996 .

[27]  W. Massa,et al.  Indenyl effect in d0-transition metal complexes: synthesis, molecular structure and lactone polymerization activity of [Ti(η5-C9H7)Cl2OMe)] , 1995 .

[28]  P. Longo,et al.  Syndiotactic specific polymerization of styrene: driving energy of the steric control and reaction mechanism† , 1995 .

[29]  David Fischer,et al.  Stereospecific Olefin Polymerization with Chiral Metallocene Catalysts , 1995 .

[30]  D. Pappalardo,et al.  .eta.5-C5Me5TiMe3-B(C6F5)3: A true Ziegler-Natta catalyst for the syndiotactic-specific polymerization of styrene , 1995 .

[31]  N. Coville,et al.  Homogeneous group 4 metallocene ziegler-natta catalysts: The influence of cyclopentadienyl-ring substituents , 1994 .

[32]  W. Kaminsky Zirconocene catalysts for olefin polymerization , 1994 .

[33]  W. Kaminsky,et al.  Syndiospecific polymerization of styrene by soluble alkoxytitanium catalysts , 1994 .

[34]  J. Chien,et al.  (.eta.5-Indenyl)trichlorotitanium. An improved syndiotactic polymerization catalyst for styrene , 1993 .

[35]  J. Chien,et al.  New syndiospecific catalysts for styrene polymerization , 1993 .

[36]  Yanlong Qian,et al.  Synthesis of (3-methoxypropyl)-cyclopentadienyltitanium and zirconium complexes , 1993 .

[37]  J. Chien,et al.  Syndiospecific polymerization of styrene. 3. Catalyst structure , 1992 .

[38]  J. Chien,et al.  Syndiospecific polymerization of styrene. II, Monocyclopentadienyltributoxy titanium/methylaluminoxane catalyst , 1991 .

[39]  L. Guisheng,et al.  Synthesis and crystal structure of (2-methoxyethyl)-cyclopentadienyl titanium complexes , 1990 .

[40]  C. Pellecchia,et al.  Soluble catalysts for syndiotactic polymerization of styrene , 1989 .

[41]  N. Ishihara,et al.  Stereospecific polymerization of styrene giving the syndiotactic polymer , 1988 .

[42]  K. Soga,et al.  Polymerization of styrene with the catalyst system prepared from hydrated transition metal (Ti, Zr) compounds and trimethylaluminium , 1988 .

[43]  P. Longo,et al.  Syndiotactic polymerization of styrene: mode of addition to the double bond , 1988 .

[44]  P. Longo,et al.  .beta.-Hydrogen abstraction and regiospecific insertion in syndiotactic polymerization of styrene , 1987 .

[45]  P. Longo,et al.  Synthesis of highly syndiotactic polystyrene with organometallic catalysts and monomer insertion , 1987 .

[46]  Masahiko Kuramoto,et al.  Crystalline syndiotactic polystyrene , 1986 .

[47]  W. Kaminsky,et al.  Polymerization of Propene and Butene with a Chiral Zirconocene and Methylalumoxane as Cocatalyst , 1985 .

[48]  P. White,et al.  Di-.mu.-oxo-(.eta.1:.eta.5-1,2,3,4-tetramethyl-5-methylene-1,3-cyclopentadiene)-bis[(.eta.-pentamethylcyclopentadienyl)titanium], (.mu.-0)2[.mu.-[.eta.1:.eta.5-C5(CH2)(CH3)4]][Ti(.eta.5-C5(CH3)5)]]2, a complex containing a bridging tetramethylmethylenecyclopentadienyl ligand , 1981 .

[49]  U. Schubert,et al.  An Organotitanium Compound with Ylide Clamps between Two Octahedrally Coordinated Metal Atoms , 1978 .

[50]  R. Pummerer,et al.  Über die Darstellung des δ‐Methoxy‐valeraldehyds: III. Mitteil. über Oxyaldehyde , 1939 .