Local error estimates of the finite element method for an elliptic problem with a Dirac source term

The solutions of elliptic problems with a Dirac measure in right-hand side are not H1 and therefore the convergence of the finite element solutions is suboptimal. Graded meshes are standard remedy to recover quasi-optimality, namely optimality up to a log-factor, for low order finite elements in L2-norm. Optimal (or quasi-optimal for the lowest order case) convergence has been shown in L2-seminorm, where the L2-seminorm is defined as the L2-norm on a subdomain which excludes the singularity. Here we show a quasi-optimal convergence for the Hs-seminorm, s > 0, and an optimal convergence in H1-seminorm for the lowest order case, on a family of quasi- uniform meshes in dimension 2. This question is motivated by the use of the Dirac measure as a reduced model in physical problems, and a high accuracy at the singularity of the finite element method is not required. Our results are obtained using local Nitsche and Schatz-type error estimates, a weak version of Aubin-Nitsche duality lemma and a discrete inf-sup condition. These theoretical results are confirmed by numerical illustrations.

[1]  Kenneth Eriksson Improved accuracy by adapted mesh-refinements in the finite element method , 1985 .

[2]  Karl Kunisch,et al.  Parabolic Control Problems in Measure Spaces with Sparse Solutions , 2013, SIAM J. Control. Optim..

[3]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[4]  Silvia Bertoluzza,et al.  The discrete commutator property of approximation spaces , 1999 .

[5]  L. Wahlbin,et al.  Local behavior in finite element methods , 1991 .

[6]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[7]  E. Casas Control of an elliptic problem with pointwise state constraints , 1986 .

[8]  Barbara I. Wohlmuth,et al.  Optimal A Priori Error Estimates for an Elliptic Problem with Dirac Right-Hand Side , 2014, SIAM J. Numer. Anal..

[9]  G. Fulford,et al.  Muco-ciliary transport in the lung. , 1986, Journal of theoretical biology.

[10]  Thomas Apel,et al.  A Priori Mesh Grading for an Elliptic Problem with Dirac Right-Hand Side , 2011, SIAM J. Numer. Anal..

[11]  A. Quarteroni,et al.  On the coupling of 1D and 3D diffusion-reaction equations. Applications to tissue perfusion problems , 2008 .

[12]  Rodolfo Rodríguez,et al.  A posteriori error estimates for elliptic problems with Dirac delta source terms , 2006, Numerische Mathematik.

[13]  Ridgway Scott,et al.  Finite element convergence for singular data , 1973 .

[14]  I. Babuska Error-bounds for finite element method , 1971 .

[15]  Carlo D'Angelo,et al.  Finite Element Approximation of Elliptic Problems with Dirac Measure Terms in Weighted Spaces: Applications to One- and Three-dimensional Coupled Problems , 2012, SIAM J. Numer. Anal..

[16]  Kenneth Eriksson,et al.  Finite element methods of optimal order for problems with singular data , 1985 .

[17]  Rolf Rannacher,et al.  A Priori Error Estimates for the Finite Element Discretization of Elliptic Parameter Identification Problems with Pointwise Measurements , 2005, SIAM J. Control. Optim..

[18]  E. Casas L2 estimates for the finite element method for the Dirichlet problem with singular data , 1985 .

[19]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[20]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[21]  C. D'Angelo,et al.  Multiscale Models of Drug Delivery by Thin Implantable Devices , 2009 .

[22]  A. H. Schatz,et al.  Interior estimates for Ritz-Galerkin methods , 1974 .

[23]  A. H. Schatz,et al.  Maximum norm estimates in the finite element method on plane polygonal domains. II. Refinements , 1979 .

[24]  Enrique Zuazua,et al.  Spike controls for elliptic and parabolic PDEs , 2013, Syst. Control. Lett..

[25]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[26]  Loic Lacouture A numerical method to solve the Stokes problem with a punctual force in source term , 2015 .

[27]  Carlos E. Kenig,et al.  The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .

[28]  Boris Vexler,et al.  Optimal error estimates for finite element discretization of elliptic optimal control problems with finitely many pointwise state constraints , 2013, Comput. Optim. Appl..

[29]  A. H. Schatz,et al.  Maximum norm estimates in the finite element method on plane polygonal domains. I , 1978 .

[30]  Pedro Morin,et al.  A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces , 2014 .