Complex dynamic behaviors of a congestion control system under a novel PD1n control law: Stability, bifurcation and periodic oscillations
暂无分享,去创建一个
Guo-Ping Jiang | Shuo Shi | Qiu Lu | Min Xiao | Binbin Tao | Chengdai Huang | Zhengxin Wang | Guoping Jiang | Chengdai Huang | Min Xiao | Zhengxin Wang | Shuo Shi | Binbin Tao | Qiu Lu
[1] Jinde Cao,et al. Hopf bifurcation analysis in a fractional-order survival red blood cells model and PDα$\mathit{PD}^{\alpha} $ control , 2018 .
[2] Weihua Deng,et al. Remarks on fractional derivatives , 2007, Appl. Math. Comput..
[3] Xuan Zhang,et al. Improving the Performance of Network Congestion Control Algorithms , 2015, IEEE Transactions on Automatic Control.
[4] Guo-Ping Jiang,et al. State feedback control at Hopf bifurcation in an exponential RED algorithm model , 2014 .
[5] Tianxiong Ji,et al. Flow-Level Stability of Wireless Networks: Separation of Congestion Control and Scheduling , 2014, IEEE Transactions on Automatic Control.
[6] Fanwei Meng,et al. New criteria for exponential stability of switched time-varying systems with delays and nonlinear disturbances , 2017 .
[7] Maoan Han,et al. Bifurcation theory for finitely smooth planar autonomous differential systems , 2018 .
[8] Jinde Cao,et al. Fractional-order PD control at Hopf bifurcations in a fractional-order congestion control system , 2017, Nonlinear Dynamics.
[9] D. Cafagna,et al. Fractional calculus: A mathematical tool from the past for present engineers [Past and present] , 2007, IEEE Industrial Electronics Magazine.
[10] Xiuli Lin,et al. On the existence of positive solutions and negative solutions of singular fractional differential equations via global bifurcation techniques , 2016 .
[11] Jinde Cao,et al. Bifurcation Control of a Congestion Control Model via State Feedback , 2013, Int. J. Bifurc. Chaos.
[12] JinRong Wang,et al. Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations , 2018, Appl. Math. Comput..
[13] R. Kelly. Global positioning of robot manipulators via PD control plus a class of nonlinear integral actions , 1998, IEEE Trans. Autom. Control..
[14] Zhi-Hong Guan,et al. Hopf bifurcation control in the XCP for the Internet congestion control system , 2012 .
[15] G. Feng,et al. Hopf bifurcation control in a congestion control model via dynamic delayed feedback. , 2008, Chaos.
[16] Frank Kelly,et al. Rate control for communication networks: shadow prices, proportional fairness and stability , 1998, J. Oper. Res. Soc..
[17] Junan Lu,et al. Identifying Topologies of Complex Dynamical Networks With Stochastic Perturbations , 2016, IEEE Transactions on Control of Network Systems.
[18] P. Dupont. Avoiding stick-slip through PD control , 1994, IEEE Trans. Autom. Control..
[19] Babak Tavassoli,et al. Using AQM for performance improvement of networked control systems , 2015, International Journal of Control, Automation and Systems.
[20] Tianguang Chu,et al. Delay induced Hopf bifurcation in a simplified network congestion control model , 2006 .
[21] Jun-Song Wang,et al. Hopf bifurcation and uncontrolled stochastic traffic- induced chaos in an RED-AQM congestion control system ∗ , 2011 .
[22] Yu-Ping Tian,et al. Eliminating oscillations in the Internet by time-delayed feedback control , 2008 .
[23] I. Podlubny. Fractional differential equations , 1998 .
[24] Weijie Feng. Robust global stability to delays of a multi-path dual congestion control algorithm , 2012, Syst. Control. Lett..
[25] Yonghong Wu,et al. Iterative algorithm and estimation of solution for a fractional order differential equation , 2016 .
[26] Gaurav Raina,et al. Local bifurcation analysis of some dual congestion control algorithms , 2005, IEEE Transactions on Automatic Control.
[27] Xu Jian,et al. Oscillation control for n-dimensional congestion control model via time-varying delay , 2011 .
[28] R. Srikant,et al. Global stability of congestion controllers for the Internet , 2003, IEEE Trans. Autom. Control..
[29] Jinde Cao,et al. Delayed feedback-based bifurcation control in an Internet congestion model , 2007 .
[30] Jinde Cao,et al. Fractional-order PD control at Hopf bifurcations in delayed fractional-order small-world networks , 2017, J. Frankl. Inst..
[31] Luo Xiao-Shu,et al. Hybrid control of bifurcation and chaos in stroboscopic model of Internet congestion control system , 2008 .
[32] Dong Liang,et al. Hopf bifurcation control of congestion control model in a wireless access network , 2014, Neurocomputing.
[33] Jean C. Walrand,et al. Fair end-to-end window-based congestion control , 2000, TNET.
[34] Junan Lu,et al. Finite-time stabilization of complex dynamical networks via optimal control , 2016, Complex..
[35] Yonghong Wu,et al. The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium , 2014, Appl. Math. Lett..
[36] Dawei Ding,et al. Hybrid control of Hopf bifurcation in a dual model of Internet congestion control system , 2014 .
[37] Jorge L. Moiola,et al. Nonlinear dynamics of internet congestion control: A frequency-domain approach , 2014, Commun. Nonlinear Sci. Numer. Simul..
[38] Jinde Cao,et al. Stability and Bifurcation of Delayed Fractional-Order Dual Congestion Control Algorithms , 2017, IEEE Transactions on Automatic Control.