From acetylene complexes to vinylidene structures: The GeC2H2 system

The expansion of germanium chemistry in recent years has been rapid. In anticipation of new experiments, a systematic theoretical investigation of the eight low lying electronic singlet GeC2H2 stationary points is carried out. This research used ab initio self‐consistent‐field (SCF), coupled cluster (CC) with single and double excitations (CCSD), and CCSD with perturbative triple excitations [CCSD(T)] levels of theory and a variety of correlation–consistent polarized valence cc‐pVXZ and cc‐pVXZ‐DK (Douglas‐Kroll) (where X = D, T, and Q) basis sets. At all levels of theory used in this study, the global minimum of the GeC2H2 potential energy surface (PES) is confirmed to be 1‐germacyclopropenylidene (Ge‐1S). Among the eight singlet stationary points, seven structures are found to be local minima and one structure (Ge‐6S) to be a second‐order saddle point. For the seven singlet minima, the energy ordering and energy differences (in kcal mol−1, with the zero‐point vibrational energy corrected values in parentheses) at the cc‐pVQZ‐DK (Douglas‐Kroll) CCSD(T) level of theory are predicted to be 1‐germacyclopropenylidene (Ge‐1S) [0.0 (0.0)] < vinylidenegermylene (Ge‐3S) [13.9 (13.5)] < ethynylgermylene (Ge‐2S) [17.9 (14.8)] < Ge‐7S [37.4 (33.9)] < syn‐3‐germapropenediylidene (Ge‐8S) [41.2 (37.9)] < germavinylidenecarbene (Ge‐5S) [66.6 (61.6)] < nonplanar germacyclopropyne (Ge‐4S) [67.8 (63.3)]. These seven isomers are all well below the dissociation limit to Ge (3P) + C2H2( $\widetilde{\rm X}$ 1Σ  g+ ). This system seems particularly well poised for matrix isolation infrared (IR) experiments. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010

[1]  Qiang Xu,et al.  Reactions of group 14 metal atoms with acetylene: a matrix isolation infrared spectroscopic and theoretical study. , 2009, The journal of physical chemistry. A.

[2]  S. Thorwirth,et al.  Coupled-cluster calculations of C(2)H(2)Si and CNHSi structural isomers. , 2009, The Journal of chemical physics.

[3]  A. Zdetsis Success and pitfalls of the Si(n-2)C(2)H(2)-C(2)B(n-2)H(n) isolobal analogy: Depth and breadth of the boron connection. , 2009, The Journal of chemical physics.

[4]  B. Pinter,et al.  Synthesizability of the Heavy Analogues of Disubstituted Cyclopropenylidene: A Theoretical Study , 2008 .

[5]  I. Fischer,et al.  On the photodissociation of propadienylidene, l-C3H2. , 2008, Physical chemistry chemical physics : PCCP.

[6]  A. Mohajeri,et al.  Singlet and triplet potential energy surfaces of C3H2 , 2007 .

[7]  Matthew L. Leininger,et al.  PSI3: An open‐source Ab Initio electronic structure package , 2007, J. Comput. Chem..

[8]  M. Kassaee,et al.  Detours for Reaching at New Germylenes, Silylenes, Carbenes, and Carbenogermylenes through Substituted Cyclopropenylidenes at Ab initio and DFT Levels , 2007 .

[9]  M. Kassaee,et al.  Switching of global minima of novel germylenic reactive intermediates via halogens (X): C2GeH2 vs. C2GeHX at ab initio and DFT levels , 2006 .

[10]  G. Bertrand,et al.  Cyclopropenylidenes: From Interstellar Space to an Isolated Derivative in the Laboratory , 2006, Science.

[11]  M. Kassaee,et al.  Divalent propargylenic C2H2M group 14 elements:Structures and singlet–triplet energy splittings (M=C, Si, Ge, Sn and Pb) , 2005 .

[12]  P. Geerlings,et al.  Comprehensive study of density functional theory based properties for group 14 atoms and functional groups, -XY3 (X = C, Si, Ge, Sn, Pb, Element 114; Y = CH3, H, F, Cl, Br, I, At). , 2005, The journal of physical chemistry. A.

[13]  P. R. Westmoreland,et al.  Synchrotron photoionization measurements of combustion intermediates: photoionization efficiency and identification of C3H2 isomers. , 2005, Physical chemistry chemical physics : PCCP.

[14]  Markus Reiher,et al.  Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order. , 2004, The Journal of chemical physics.

[15]  K. Sakamoto,et al.  Ab initio study of the photochemistry of c-C2H2Si , 2004 .

[16]  Markus Reiher,et al.  Exact decoupling of the Dirac Hamiltonian. I. General theory. , 2004, The Journal of chemical physics.

[17]  Markus Reiher,et al.  The generalized Douglas–Kroll transformation , 2002 .

[18]  P. Thaddeus,et al.  The Rotational Spectra of H2CCSi and H2C4Si , 2002 .

[19]  H. Reisenauer,et al.  Reaction of Silicon Atoms with Acetylene and Ethylene: Generation and Matrix‐Spectroscopic Identification of C2H2Si and C2H4Si Isomers , 1998 .

[20]  J. Stanton Why CCSD(T) works: a different perspective , 1997 .

[21]  W. D. Allen,et al.  Cyclopropyne and Silacyclopropyne: A World of Difference , 1996 .

[22]  H. Schwarz,et al.  On the Question of Stability, Conjugation, and “Aromaticity” in Imidazol-2-ylidenes and Their Silicon Analogs† , 1996 .

[23]  G. Frenking,et al.  Electronic Structure of Stable Carbenes, Silylenes, and Germylenes , 1996 .

[24]  Juergen Hinze,et al.  Electronegativity and Molecular Properties , 1996 .

[25]  H. Reisenauer,et al.  Silacyclopropyne: Matrix Spectroscopic Identification and ab Initio Investigations , 1995 .

[26]  S. Saito,et al.  Microwave spectrum and molecular structure of silacyclopropenylidene c-C2H2Si , 1994 .

[27]  H. Reisenauer,et al.  C2H2Si Isomers: Generation by Pulsed Flash Pyrolysis and Matrix-Spectroscopic Identification† , 1994 .

[28]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton , 1993 .

[29]  John F. Stanton,et al.  The ACES II program system , 1992 .

[30]  H. Schaefer,et al.  THE INFRARED SPECTRUM OF SILACYCLOPROPENYLIDENE , 1991 .

[31]  John D. Watts,et al.  Non-iterative fifth-order triple and quadruple excitation energy corrections in correlated methods , 1990 .

[32]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[33]  R. Bartlett Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry , 1989 .

[34]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[35]  L. J. Schaad,et al.  Vinylidene carbene: a new C3H2 species , 1987 .

[36]  Patrick Thaddeus,et al.  Laboratory and astronomical spectroscopy of C3H2, the first interstellar organic ring , 1987 .

[37]  Julia E. Rice,et al.  The closed‐shell coupled cluster single and double excitation (CCSD) model for the description of electron correlation. A comparison with configuration interaction (CISD) results , 1987 .

[38]  H. Schaefer,et al.  Structures and energies of singlet silacyclopropenylidene and 14 higher lying C2SiH2 isomers. , 1986, Journal of the American Chemical Society.

[39]  P. Thaddeus,et al.  Laboratory and astronomical identification of cyclopropenylidene, C3H2. , 1985 .

[40]  P. Knowles,et al.  A second order multiconfiguration SCF procedure with optimum convergence , 1985 .

[41]  P. Knowles,et al.  An efficient second-order MC SCF method for long configuration expansions , 1985 .

[42]  W. Adam,et al.  Direct Photochemical Cleavage of the Cyclobutane Ring in Bicyclo[4.2.0]octane on 185nm Irradiation in Solution , 1984 .

[43]  W. Kutzelnigg Chemical Bonding in Higher Main Group Elements , 1984 .

[44]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[45]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .

[46]  Robin Walsh,et al.  Bond dissociation energy values in silicon-containing compounds and some of their implications , 1981 .

[47]  H. Schaefer,et al.  Can cyclopropyne really be made , 1980 .

[48]  R. Bartlett,et al.  Low-Lying Electronic States of Unsaturated Carbenes. Comparison with Methylene , 1978 .

[49]  H. Kollmar Insertion reaction of a nucleophilic carbene. A molecular orbital theoretical study , 1978 .

[50]  M. Dewar,et al.  Ground states of molecules. XIX. Carbene and its reactions , 1972 .

[51]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[52]  H. Schaefer,et al.  Toward the laboratory identification of cyclopropenylidene , 1985 .

[53]  P. Skell,et al.  STRUCTURE AND PROPERTIES OF PROPARGYLENE C3H21 , 1960 .