Approximating and computing behavioural distances in probabilistic transition systems

In an earlier paper we presented a pseudometric on the states of a probabilistic transition system, yielding a quantitative notion of behavioural equivalence. The behavioural pseudometric was defined via the terminal coalgebra of a functor based on a metric on Borel probability measures. In the present paper we give a polynomial-time algorithm, based on linear programming, to calculate the distances between states up to a prescribed degree of accuracy.

[1]  Doina Precup,et al.  An approximation algorithm for labelled Markov processes: towards realistic approximation , 2005, Second International Conference on the Quantitative Evaluation of Systems (QEST'05).

[2]  Erik P. de Vink,et al.  Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach , 1997, Theor. Comput. Sci..

[3]  Radha Jagadeesan,et al.  Approximate Reasoning for Real-Time Probabilistic Processes , 2004, QEST.

[4]  Pierre America,et al.  Solving Reflexive Domain Equations in a Category of Complete Metric Spaces , 1987, J. Comput. Syst. Sci..

[5]  E. J. McShane,et al.  Extension of range of functions , 1934 .

[6]  Thomas A. Henzinger,et al.  Discounting the Future in Systems Theory , 2003, ICALP.

[7]  Radha Jagadeesan,et al.  Metrics for Labeled Markov Systems , 1999, CONCUR.

[8]  J. Lambek Subequalizers , 1970, Canadian Mathematical Bulletin.

[9]  James Worrell,et al.  An Algorithm for Quantitative Verification of Probabilistic Transition Systems , 2001, CONCUR.

[10]  K. Parthasarathy,et al.  Probability measures on metric spaces , 1967 .

[11]  S. Banach Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales , 1922 .

[12]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[13]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[14]  Jan Rutten,et al.  On the foundations of final coalgebra semantics: non-well-founded sets, partial orders, metric spaces , 1998, Mathematical Structures in Computer Science.

[15]  Éva Tardos,et al.  A strongly polynomial minimum cost circulation algorithm , 1985, Comb..

[16]  G. A. Edgar Integral, probability, and fractal measures , 1997 .

[17]  Robin Milner,et al.  Algebraic laws for nondeterminism and concurrency , 1985, JACM.

[18]  H. Whitney Analytic Extensions of Differentiable Functions Defined in Closed Sets , 1934 .

[19]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[20]  Dominique Laurent,et al.  Approximate reasoning for real-time probabilistic processes , 2004 .

[21]  Luca de Alfaro,et al.  Quantitative Verification and Control via the Mu-Calculus , 2003, CONCUR.

[22]  James Worrell,et al.  A behavioural pseudometric for probabilistic transition systems , 2005, Theor. Comput. Sci..

[23]  Jan J. M. M. Rutten,et al.  On the Foundation of Final Semantics: Non-Standard Sets, Metric Spaces, Partial Orders , 1992, REX Workshop.

[24]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[25]  T. Bukowski,et al.  Integral. , 2019, Healthcare protection management.

[26]  B. Jacobs,et al.  A tutorial on (co)algebras and (co)induction , 1997 .

[27]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[28]  Radha Jagadeesan,et al.  The metric analogue of weak bisimulation for probabilistic processes , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[29]  Tom Chothia,et al.  Metrics for Action-labelled Quantitative Transition Systems , 2006, QAPL.

[30]  James B. Orlin A Faster Strongly Polynomial Minimum Cost Flow Algorithm , 1993, Oper. Res..

[31]  Radha Jagadeesan,et al.  Metrics for labelled Markov processes , 2004, Theor. Comput. Sci..

[32]  C. Jones,et al.  A probabilistic powerdomain of evaluations , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[33]  Scott A. Smolka,et al.  Algebraic Reasoning for Probabilistic Concurrent Systems , 1990, Programming Concepts and Methods.