A Double Team Semantics for Generalized Quantifiers

We investigate extensions of dependence logic with generalized quantifiers. We also introduce and investigate the notion of a generalized atom. We define a system of semantics that can accommodate variants of dependence logic, possibly extended with generalized quantifiers and generalized atoms, under the same umbrella framework. The semantics is based on pairs of teams, or double teams. We also devise a game-theoretic semantics equivalent to the double team semantics. We make use of the double team semantics by defining a logic $$\hbox {DC}^2$$DC2 which canonically fuses together two-variable dependence logic$$\hbox {D}^2$$D2 and two-variable logic with counting quantifiers$$\hbox {FOC}^2$$FOC2. We establish that the satisfiability and finite satisfiability problems of $$\hbox {DC}^2$$DC2 are complete for $$\hbox {NEXPTIME}$$NEXPTIME.

[1]  Thomas Zeume,et al.  Two-Variable Logic on 2-Dimensional Structures , 2013, CSL.

[2]  Lauri Hella,et al.  The Size of a Formula as a Measure of Complexity , 2015, Logic Without Borders.

[3]  M. Engelmann The Philosophical Investigations , 2013 .

[4]  J. Hintikka,et al.  Informational Independence as a Semantical Phenomenon , 1989 .

[5]  Antti Kuusisto Resource Conscious Quantification and Ontologies with Degrees of Significance , 2010 .

[6]  Perlindström First Order Predicate Logic with Generalized Quantifiers , 1966 .

[7]  Pietro Galliani,et al.  Inclusion and exclusion dependencies in team semantics - On some logics of imperfect information , 2011, Ann. Pure Appl. Log..

[8]  Janeen Baxter,et al.  DEPENDENCE AND INDEPENDENCE , 1995 .

[9]  Erich Grädel,et al.  Dependence and Independence , 2012, Stud Logica.

[10]  Jakub Michaliszyn,et al.  Two-Variable Universal Logic with Transitive Closure , 2012, CSL.

[11]  Fredrik Engström,et al.  Generalized Quantifiers in Dependence Logic , 2012, J. Log. Lang. Inf..

[12]  Erich Grädel,et al.  Model-checking games for logics of imperfect information , 2013, Theor. Comput. Sci..

[13]  Merlijn Sevenster,et al.  Independence-Friendly Logic - a Game-Theoretic Approach , 2011, London Mathematical Society lecture note series.

[14]  Jonni Virtema,et al.  Complexity of Two-Variable Dependence Logic and IF-Logic , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[15]  Pietro Galliani,et al.  On Dependence Logic , 2013, Johan van Benthem on Logic and Information Dynamics.

[16]  Luc Steels,et al.  Aibo''s first words. the social learning of language and meaning. Evolution of Communication , 2002 .

[17]  Ian Pratt-Hartmann Complexity of the Two-Variable Fragment with Counting Quantifiers , 2005, J. Log. Lang. Inf..

[18]  Antti Kuusisto Defining a Double Team Semantics for Generalized Quantifiers (Extended Version) , 2012 .

[19]  Pietro Galliani,et al.  Hierarchies in independence logic , 2013, CSL.

[20]  Antti Kuusisto,et al.  Some Turing-Complete Extensions of First-Order Logic , 2014, GandALF.

[21]  Antti Kuusisto,et al.  Logics of Imperfect Information without Identity , 2011 .

[22]  Juha Kontinen,et al.  Characterizing quantifier extensions of dependence logic , 2012, The Journal of Symbolic Logic.

[23]  Witold Charatonik,et al.  Two-Variable Logic with Counting and Trees , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[24]  Jakub Michaliszyn,et al.  Two-Variable First-Order Logic with Equivalence Closure , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[25]  James Worrell,et al.  Complexity of Two-Variable Logic on Finite Trees , 2013, ACM Trans. Comput. Log..

[26]  Wieslaw Szwast,et al.  FO^2 with one transitive relation is decidable , 2013, STACS.

[27]  Juha Kontinen,et al.  Dependence Logic with Generalized Quantifiers: Axiomatizations , 2013, WoLLIC.

[28]  Wilfrid Hodges,et al.  Compositional Semantics for a Language of Imperfect Information , 1997, Log. J. IGPL.

[29]  Lauri Hella,et al.  Inclusion Logic and Fixed Point Logic , 2013, CSL.

[30]  Antti Kuusisto A Double Team Semantics for Generalized Quantifiers , 2013, Journal of Logic, Language and Information.

[31]  Julian C. Bradfield,et al.  Team building in dependence , 2013, CSL.