Entropy analysis of kinetic flux vector splitting schemes for the compressible Euler equations

Abstract. Flux Vector Splitting (FVS) scheme is one group of approximate Riemann solvers for the compressible Euler equations. In this paper, the discretized entropy condition of the Kinetic Flux Vector Splitting (KFVS) scheme based on the gas-kinetic theory is proved. The proof of the entropy condition involves the entropy difference between the distinguishable and indistinguishable particles.

[1]  D. Pullin,et al.  Direct simulation methods for compressible inviscid ideal-gas flow , 1980 .

[2]  Antony Jameson,et al.  Gas-kinetic finite volume methods , 1995 .

[3]  K. Xu,et al.  Gas-kinetic schemes for the compressible Euler equations: Positivity-preserving analysis , 1999 .

[4]  Kun Xu,et al.  Gas-kinetic schemes for unsteady compressible flow simulations , 1998 .

[5]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[6]  B. Perthame,et al.  Boltzmann type schemes for gas dynamics and the entropy property , 1990 .

[7]  Mikhail Naumovich Kogan,et al.  Rarefied Gas Dynamics , 1969 .

[8]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[9]  Antony Jameson,et al.  Gas-kinetic finite volume methods, flux-vector splitting, and artificial diffusion , 1995 .

[10]  Philippe Villedieu,et al.  High-Order Positivity-Preserving Kinetic Schemes for the Compressible Euler Equations , 1996 .

[11]  Benoît Perthame,et al.  Maximum principle on the entropy and second-order kinetic schemes , 1994 .

[12]  B. Perthame Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions , 1992 .

[13]  S. M. Deshpande,et al.  A second-order accurate kinetic-theory-based method for inviscid compressible flows , 1986 .

[14]  B. Leer,et al.  Flux-vector splitting for the Euler equations , 1997 .