Symmetric teleparallel Horndeski gravity

Horndeski gravity is the most general scalar-tensor theory with one scalar field leading to second-order Euler-Lagrange field equations for the metric and scalar field, and it is based on Riemannian geometry. In this paper, we formulate an analogue version of Horndeski gravity in a symmetric teleparallel geometry which assumes that both the curvature (general) and torsion are vanishing and gravity is only related to nonmetricity. Our setup requires that the Euler-Lagrange equations for not only metric and scalar field but also connection should be at most second order. We find that the theory can be always recast as a sum of the Riemannian Horndeski theory and new terms that are purely teleparallel. Due to the nature of nonmetricity, there are many more possible ways of constructing second-order theories of gravity. In this regard, up to some assumptions, we find the most general $k$-essence extension of Symmetric Teleparallel Horndeski gravity. We also formulate a novel theory containing higher-order derivatives acting on nonmetricity while still respecting the second-order conditions, which can be recast as an extension of Kinetic Gravity Braiding. We finish our study by presenting the FLRW cosmological equations for our model.

[1]  S. Bahamonde,et al.  Coincident gauge for static spherical field configurations in symmetric teleparallel gravity , 2022, The European Physical Journal C.

[2]  S. Bahamonde,et al.  Black hole solutions in scalar-tensor symmetric teleparallel gravity , 2022, Journal of Cosmology and Astroparticle Physics.

[3]  J. Serra,et al.  Causality constraints on black holes beyond GR , 2022, Journal of High Energy Physics.

[4]  Kun Hu,et al.  ADM formulation and Hamiltonian analysis of $f(Q)$ gravity , 2022, 2204.12826.

[5]  T. Koivisto,et al.  Lost in translation: The Abelian affine connection (in the coincident gauge) , 2022, International Journal of Geometric Methods in Modern Physics.

[6]  M. Hendry,et al.  Teleparallel gravity: from theory to cosmology , 2021, Reports on progress in physics. Physical Society.

[7]  M. Hohmann General covariant symmetric teleparallel cosmology , 2021, Physical Review D.

[8]  E. Saridakis,et al.  Gravitational-wave propagation and polarizations in the teleparallel analog of Horndeski gravity , 2021, Physical Review D.

[9]  S. Capozziello,et al.  Modified Gravity and Cosmology: An Update by the CANTATA Network , 2021, 2105.12582.

[10]  E. Saridakis,et al.  First evidence that non-metricity f(Q) gravity could challenge ΛCDM , 2021, Physics Letters B.

[11]  C. Boehmer,et al.  Modified gravity: A unified approach , 2021, Physical Review D.

[12]  A. Paliathanasis,et al.  Cosmological solutions and growth index of matter perturbations in f(Q) gravity , 2021, Physical Review D.

[13]  N. Frusciante Signatures of f(Q) gravity in cosmology , 2021, 2101.09242.

[14]  M. Hohmann,et al.  Post-Newtonian limit of generalized symmetric teleparallel gravity , 2020, 2012.12875.

[15]  R. Lazkoz,et al.  Observational constraints on cosmological solutions of f(Q) theories , 2020, Physical Review D.

[16]  Deng Wang,et al.  Cosmography in f(Q) gravity , 2020, 2011.00420.

[17]  Fabio D’Ambrosio,et al.  ADM formulation and Hamiltonian analysis of Coincident General Relativity , 2020, 2007.03261.

[18]  N. Nunes,et al.  Testing F(Q) gravity with redshift space distortions , 2020, 2004.07867.

[19]  S. Bahamonde,et al.  Post-Newtonian limit of teleparallel Horndeski gravity , 2020, Classical and Quantum Gravity.

[20]  Damianos Iosifidis Cosmological hyperfluids, torsion and non-metricity , 2020, The European Physical Journal C.

[21]  F. Vernizzi,et al.  Dark-energy instabilities induced by gravitational waves , 2019, Journal of Cosmology and Astroparticle Physics.

[22]  T. Koivisto,et al.  General teleparallel quadratic gravity , 2019, Physics Letters B.

[23]  S. Bahamonde,et al.  Reviving Horndeski theory using teleparallel gravity after GW170817 , 2019, Physical Review D.

[24]  J. Jim'enez,et al.  Cosmology in f(Q) geometry , 2019, 1906.10027.

[25]  F. Lobo,et al.  Observational constraints of f(Q) gravity , 2019, Physical Review D.

[26]  F. Vernizzi,et al.  Resonant decay of gravitational waves into dark energy , 2019, Journal of Cosmology and Astroparticle Physics.

[27]  G. Chee,et al.  Cosmology in symmetric teleparallel gravity and its dynamical system , 2019, The European Physical Journal C.

[28]  S. Capozziello,et al.  Noether symmetries in symmetric teleparallel cosmology , 2019, The European Physical Journal C.

[29]  S. Bahamonde,et al.  Can Horndeski theory be recast using teleparallel gravity? , 2019, Physical Review D.

[30]  L. Heisenberg,et al.  The Geometrical Trinity of Gravity , 2019, Universe.

[31]  C. Boehmer,et al.  Teleparallel theories of gravity: illuminating a fully invariant approach , 2018, Classical and Quantum Gravity.

[32]  C. Skordis,et al.  Dark Energy after GW170817 Revisited. , 2018, Physical review letters.

[33]  E. Saridakis,et al.  Polarization of gravitational waves in symmetric teleparallel theories of gravity and their modifications , 2018, Physical Review D.

[34]  L. Heisenberg,et al.  A systematic approach to generalisations of General Relativity and their cosmological implications , 2018, Physics Reports.

[35]  F. Vernizzi,et al.  Gravitational wave decay into dark energy , 2018, Journal of Cosmology and Astroparticle Physics.

[36]  Luca Santoni,et al.  Behind Horndeski: structurally robust higher derivative EFTs , 2018, Journal of High Energy Physics.

[37]  O. Vilson,et al.  Family of scalar-nonmetricity theories of gravity , 2018, Physical Review D.

[38]  L. Heisenberg,et al.  Teleparallel Palatini theories , 2018, Journal of Cosmology and Astroparticle Physics.

[39]  M. Saal,et al.  Nonmetricity formulation of general relativity and its scalar-tensor extension , 2018, Physical Review D.

[40]  L. Heisenberg,et al.  Coincident general relativity , 2017, Physical Review D.

[41]  T. Koivisto,et al.  The spectrum of symmetric teleparallel gravity , 2017, The European Physical Journal C.

[42]  P. Ferreira,et al.  Strong Constraints on Cosmological Gravity from GW170817 and GRB 170817A. , 2017, Physical review letters.

[43]  F. Vernizzi,et al.  Dark Energy after GW170817 and GRB170817A. , 2017, Physical review letters.

[44]  B. Jain,et al.  Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories. , 2017, Physical review letters.

[45]  J. Ezquiaga,et al.  Dark Energy After GW170817: Dead Ends and the Road Ahead. , 2017, Physical review letters.

[46]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[47]  F. Vernizzi,et al.  Weakly broken galileon symmetry , 2015, 1505.00007.

[48]  Lavinia Heisenberg Generalization of the Proca Action , 2014, 1402.7026.

[49]  J. G. Pereira,et al.  Teleparallel Gravity: An Introduction , 2012 .

[50]  J. Yokoyama,et al.  Generalized G-Inflation —Inflation with the Most General Second-Order Field Equations— , 2011, 1105.5723.

[51]  D. Steer,et al.  From k-essence to generalised Galileons , 2011, 1103.3260.

[52]  J. Yokoyama,et al.  Inflation driven by the Galileon field. , 2010, Physical review letters.

[53]  I. Sawicki,et al.  Imperfect Dark Energy from Kinetic Gravity Braiding , 2010, 1008.0048.

[54]  A. Kehagias,et al.  New model of inflation with nonminimal derivative coupling of standard model Higgs boson to gravity. , 2010, Physical review letters.

[55]  R. Ferraro,et al.  Dark torsion as the cosmic speed-up , 2008, 0812.1205.

[56]  R. Rattazzi,et al.  Galileon as a local modification of gravity , 2008, 0811.2197.

[57]  Franco Fiorini,et al.  Born-Infeld gravity in Weitzenböck spacetime , 2008, 0812.1981.

[58]  M. Adak,et al.  LAGRANGE FORMULATION OF THE SYMMETRIC TELEPARALLEL GRAVITY , 2005, gr-qc/0505025.

[59]  P. Steinhardt,et al.  Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration , 2000, Physical review letters.

[60]  T. Chiba,et al.  Kinetically driven quintessence , 1999, astro-ph/9912463.

[61]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[62]  J. M. Nester,et al.  Symmetric teleparallel general relativity , 1998, gr-qc/9809049.

[63]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[64]  J. Mccrea,et al.  Metric affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance , 1994, gr-qc/9402012.

[65]  J. Mccrea Irreducible decompositions of nonmetricity, torsion, curvature and Bianchi identities in metric-affine spacetimes , 1992 .

[66]  F. Hehl,et al.  General Relativity with Spin and Torsion: Foundations and Prospects , 1976 .

[67]  G. W. Horndeski Second-order scalar-tensor field equations in a four-dimensional space , 1974 .