Ultraviolet Spectrometer Observations of Neptune and Triton

Results from the occultation of the sun by Neptune imply a temperature of 750 � 150 kelvins in the upper levels of the atmosphere (composed mostly of atomic and molecular hydrogen) and define the distributions of methane, acetylene, and ethane at lower levels. The ultraviolet spectrum of the sunlit atmosphere of Neptune resembles the spectra of the Jupiter, Saturn, and Uranus atmospheres in that it is dominated by the emissions of H Lyman α (340 � 20 rayleighs) and molecular hydrogen. The extreme ultraviolet emissions in the range from 800 to 1100 angstroms at the four planets visited by Voyager scale approximately as the inverse square of their heliocentric distances. Weak auroral emissions have been tentatively identified on the night side of Neptune. Airglow and occultation observations of Triton's atmosphere show that it is composed mainly of molecular nitrogen, with a trace of methane near the surface. The temperature of Triton's upper atmosphere is 95 � 5 kelvins, and the surface pressure is roughly 14 microbars.

[1]  D. Strobel,et al.  Overview of the Voyager ultraviolet spectrometry results through Jupiter encounter , 1981 .

[2]  Roger V. Yelle,et al.  The far ultraviolet reflection spectrum of Uranus - Results from the Voyager encounter , 1989 .

[3]  B. Murray,et al.  Behavior of Carbon Dioxide and Other Volatiles on Mars , 1966, Science.

[4]  J. Fox,et al.  Electron energy deposition in N2 gas , 1988 .

[5]  D. Gautier,et al.  The helium abundance of Saturn from Voyager measurements , 1984 .

[6]  Fritz M. Neubauer,et al.  Magnetic Fields at Neptune , 1989, Science.

[7]  J. McConnell,et al.  The dependence of electroglow on the solar flux , 1987 .

[8]  G. E. Wood,et al.  Voyager Radio Science Observations of Neptune and Triton , 1989, Science.

[9]  G. Orton,et al.  The spectra of Uranus and Neptune at 8-14 and 17-23 microns , 1987 .

[10]  L. Horn,et al.  Photometry from Voyager 2: Initial Results from the Neptunian Atmosphere, Satellites, and Rings , 1986, Science.

[11]  D. Hunten The Escape of H2 from Titan , 1973 .

[12]  J. Clarke Iue observations of Neptune for H Lyman‐α emission , 1988 .

[13]  D. Strobel,et al.  EUV emission from Titan's upper atmosphere: Voyager 1 encounter , 1982 .

[14]  M. Tomasko,et al.  Analysis of Raman scattered LY‐α emissions from the atmosphere of Uranus , 1987 .

[15]  A. Dalgarno,et al.  Ultraviolet spectrometer experiment for the Voyager mission , 1977 .

[16]  S. Atreya,et al.  Stratospheric aerosols from CH4 photochemistry on Neptune , 1989 .

[17]  D. Judge,et al.  Absolute solar flux measurement shortward of 575 Å , 1986 .

[18]  M. Torr,et al.  Ionization frequencies for solar cycle 21: Revised , 1985 .

[19]  R. H. Brown,et al.  Triton: Do We See to the Surface? , 1989, Science.

[20]  D. Hunten,et al.  Extreme Ultraviolet Observations from the Voyager 2 Encounter with Saturn , 1982, Science.

[21]  J. McConnell,et al.  Voyager U.V. spectrometer observations of He 584 A dayglow at Jupiter , 1980 .

[22]  J. Caldwell,et al.  Observations of Neptune and Uranus below 2000 A with the IUE , 1988 .

[23]  S. K. Croft,et al.  Voyager 2 at Neptune: Imaging Science Results , 1989, Science.

[24]  J. Elias,et al.  The structure of Neptune's upper atmosphere: The stellar occultation of 24 May 1981 , 1983 .

[25]  R. Clark,et al.  Nitrogen on Triton , 1983 .

[26]  Stuart Bowyer,et al.  The extreme ultraviolet day airglow , 1983 .

[27]  R. Yelle H2 emissions from the outer planets , 1988 .

[28]  L. Horn,et al.  Infrared Observations of the Neptunian System , 1989, Science.

[29]  A. Dessler Mass-injection rate from Io into the Io plasma torus☆ , 1980 .

[30]  Paul N. Romani,et al.  The upper atmosphere of Uranus: EUV occultations observed by Voyager 2 , 1987 .

[31]  J. Blamont,et al.  Ultraviolet Spectrometer Observations of Uranus , 1986, Science.

[32]  W. I. Axford,et al.  Hot Plasma and Energetic Particles in Neptune's Magnetosphere , 1989, Science.