Lunar frozen orbits revisited
暂无分享,去创建一个
Pini Gurfil | Tao Nie | P. Gurfil | Tao Nie
[1] E. Ortore,et al. A vectorial approach to determine frozen orbital conditions , 2017 .
[2] R. H. Lyddane. Small eccentricities or inclinations in the Brouwer theory of the artificial satellite , 1963 .
[3] Hexi Baoyin,et al. Five Special Types of Orbits Around Mars , 2010, 1108.4737.
[4] J. Junkins,et al. Analytical Mechanics of Space Systems , 2003 .
[5] V. Kudielka. Equilibria Bifurcations of Satellite Orbits , 1997 .
[6] Antonio Elipe,et al. Frozen Orbits About the Moon , 2003 .
[7] D. Scheeres,et al. Stability Analysis of Planetary Satellite Orbiters: Application to the Europa Orbiter , 2001 .
[8] A. Lemaitre,et al. Frozen orbits at high eccentricity and inclination: application to Mercury orbiter , 2010, 1003.0327.
[9] A. Noullez,et al. Secular dynamics of a lunar orbiter: a global exploration using Prony’s frequency analysis , 2014 .
[10] M. Lara,et al. Lunar Analytical Theory for Polar Orbits in a 50-Degree Zonal Model Plus Third-Body Effect , 2009 .
[11] A. Abad,et al. Analytical Model to Find Frozen Orbits for a Lunar Orbiter , 2009 .
[12] Y. Kozai. Motion of a Lunar Orbiter , 1963 .
[13] T. Kalvouridis,et al. Periodic Solutions in the Planar (n 1) Ring Problem with Oblateness , 2007 .
[14] D. Scheeres. Satellite Dynamics About Asteroids: Computing Poincaré Maps for the General Case , 1999 .
[15] K. Tsiganis,et al. Effect of 3rd-degree gravity harmonics and Earth perturbations on lunar artificial satellite orbits , 2010 .
[16] Daniel J. Scheeres,et al. Design of Science Orbits About Planetary Satellites: Application to Europa , 2006 .
[17] R. R. Allan. The critical inclination problem: A simple treatment , 1970 .
[18] C. Ulivieri,et al. Long-term effects on lunar orbiter , 1997 .
[19] Xiaodong Liu,et al. Analytical investigations of quasi-circular frozen orbits in the Martian gravity field , 2011, 1108.4645.
[20] Bruce R. Miller,et al. The critical inclination in artificial satellite theory , 1986 .
[21] R. Broucke. Long-Term Third-Body Effects via Double Averaging , 2003 .
[22] David Quinn,et al. Lunar Frozen Orbits , 2006 .
[23] J. Palacián,et al. Hill Problem Analytical Theory to the Order Four: Application to the Computation of Frozen Orbits around Planetary Satellites , 2009 .
[24] Daniel J. Scheeres,et al. Orbit Mechanics About Asteroids and Comets , 2012 .
[25] T. Felsentreger,et al. A semi-analytic theory for the motion of a lunar satellite , 1970 .
[26] Dirk Brouwer,et al. SOLUTION OF THE PROBLEM OF ARTIFICIAL SATELLITE THEORY WITHOUT DRAG , 1959 .
[27] Martin Lara,et al. Design of long-lifetime lunar orbits: A hybrid approach , 2011 .
[28] J. P. S. Carvalho,et al. NON-SPHERICITY OF THE MOON AND CRITICAL INCLINATION , 2009 .
[29] M. Lara. Simplified Equations for Computing Science Orbits Around Planetary Satellites , 2008 .
[30] A. Prado. Third-Body Perturbation in Orbits Around Natural Satellites , 2003 .
[31] Yoshihide Kozai,et al. The motion of a close earth satellite , 1959 .