Parameter-sweeping techniques for temporal dynamics of neuronal systems: case study of Hindmarsh-Rose model

BackgroundDevelopment of effective and plausible numerical tools is an imperative task for thorough studies of nonlinear dynamics in life science applications.ResultsWe have developed a complementary suite of computational tools for two-parameter screening of dynamics in neuronal models. We test a ‘brute-force’ effectiveness of neuroscience plausible techniques specifically tailored for the examination of temporal characteristics, such duty cycle of bursting, interspike interval, spike number deviation in the phenomenological Hindmarsh-Rose model of a bursting neuron and compare the results obtained by calculus-based tools for evaluations of an entire spectrum of Lyapunov exponents broadly employed in studies of nonlinear systems.ConclusionsWe have found that the results obtained either way agree exceptionally well, and can identify and differentiate between various fine structures of complex dynamics and underlying global bifurcations in this exemplary model. Our future planes are to enhance the applicability of this computational suite for understanding of polyrhythmic bursting patterns and their functional transformations in small networks.

[1]  Enno de Lange,et al.  The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations. , 2008, Chaos.

[2]  J. M. Gonzalez-Miranda,et al.  Observation of a continuous interior crisis in the Hindmarsh-Rose neuron model. , 2003, Chaos.

[3]  R. Bertram,et al.  Topological and phenomenological classification of bursting oscillations. , 1995, Bulletin of mathematical biology.

[4]  Nancy J Kopell,et al.  New dynamics in cerebellar Purkinje cells: torus canards. , 2008, Physical review letters.

[5]  Charalampos Skokos,et al.  The Lyapunov Characteristic Exponents and Their Computation , 2008, 0811.0882.

[6]  J. M. Gonzalez-Miranda Complex bifurcation Structures in the Hindmarsh-rose Neuron Model , 2007, Int. J. Bifurc. Chaos.

[7]  J. Hindmarsh,et al.  THE DEVELOPMENT OF THE HINDMARSH-ROSE MODEL FOR BURSTING , 2005 .

[8]  Roberto Barrio,et al.  Algorithm 924: TIDES, a Taylor Series Integrator for Differential EquationS , 2012, TOMS.

[9]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[10]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[11]  Alessandro Torcini,et al.  Dynamical phases of the Hindmarsh-Rose neuronal model: studies of the transition from bursting to spiking chaos. , 2007, Chaos.

[12]  Roberto Barrio,et al.  Breaking the limits: The Taylor series method , 2011, Appl. Math. Comput..

[13]  L. Chua,et al.  Methods of qualitative theory in nonlinear dynamics , 1998 .

[14]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[15]  Andrey Shilnikov,et al.  Polyrhythmic synchronization in bursting networking motifs. , 2008, Chaos.

[16]  Arun V. Holden,et al.  Bifurcations, burstings, chaos and crises in the Rose-Hindmarsh model for neuronal activity , 1993 .

[17]  Teresa Ree Chay,et al.  Chaos in a three-variable model of an excitable cell , 1985 .

[18]  Andrey Shilnikov,et al.  Methods of the Qualitative Theory for the Hindmarsh-rose Model: a Case Study - a Tutorial , 2008, Int. J. Bifurc. Chaos.

[19]  E Mosekilde,et al.  Bifurcation structure of a model of bursting pancreatic cells. , 2001, Bio Systems.

[20]  Andrey Shilnikov,et al.  Order parameter for bursting polyrhythms in multifunctional central pattern generators. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Andrey Shilnikov,et al.  Mechanism of bistability: tonic spiking and bursting in a neuron model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[23]  J. Hindmarsh,et al.  A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[24]  Andrey Shilnikov,et al.  When weak inhibition synchronizes strongly desynchronizing networks of bursting neurons. , 2008, Physical review letters.

[25]  John Rinzel,et al.  Bursting oscillations in an excitable membrane model , 1985 .

[26]  W. Kristan Neuronal Decision-Making Circuits , 2008, Current Biology.

[27]  Andrey Shilnikov,et al.  Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. , 2005, Physical review letters.

[28]  Yu. A. Gur'yan,et al.  Parts I and II , 1982 .

[29]  Roberto Barrio,et al.  Sensitivity Analysis of ODES/DAES Using the Taylor Series Method , 2005, SIAM J. Sci. Comput..

[30]  Roberto Barrio,et al.  VSVO formulation of the taylor method for the numerical solution of ODEs , 2005 .

[31]  Xiao-Jing Wang,et al.  Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle , 1993 .

[32]  Martin Hasler,et al.  Predicting single spikes and spike patterns with the Hindmarsh–Rose model , 2008, Biological Cybernetics.

[33]  Frank Moss,et al.  Homoclinic bifurcation in a Hodgkin-Huxley model of thermally sensitive neurons. , 2000, Chaos.

[34]  D. Terman,et al.  The transition from bursting to continuous spiking in excitable membrane models , 1992 .

[35]  Andrey Shilnikov,et al.  Coexistence of Tonic Spiking Oscillations in a Leech Neuron Model , 2005, Journal of Computational Neuroscience.

[36]  Arun V. Holden,et al.  From simple to complex oscillatory behaviour via intermittent chaos in the Rose-Hindmarsh model for neuronal activity , 1992 .

[37]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[38]  Andrey Shilnikov,et al.  Voltage interval mappings for activity transitions in neuron models for elliptic bursters , 2011 .

[39]  Alexander B. Neiman,et al.  Variability of bursting patterns in a neuron model in the presence of noise , 2009, Journal of Computational Neuroscience.

[40]  Kevin L. Briggman,et al.  Multifunctional pattern-generating circuits. , 2008, Annual review of neuroscience.

[41]  P. Hartman Ordinary Differential Equations , 1965 .

[42]  N. K. Rozov,et al.  Differential Equations with Small Parameters and Relaxation Oscillations , 1980 .

[43]  Andrey Shilnikov,et al.  Origin of bursting through homoclinic spike adding in a neuron model. , 2007, Physical review letters.

[44]  Arun V. Holden,et al.  From simple to simple bursting oscillatory behaviour via chaos in the Rose-Hindmarsh model for neuronal activity , 1992 .

[45]  R. Genesio,et al.  On the dynamics of chaotic spiking-bursting transition in the Hindmarsh-Rose neuron. , 2009, Chaos.

[46]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .

[47]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[48]  Zhuoqin Yang,et al.  The genesis of period-adding bursting without bursting-chaos in the Chay model , 2006 .