Practical full and partial separability criteria for multipartite pure states based on the coefficient matrix method

We give the concept, construction and some basic properties of coefficient matrices of a multipartite qudit pure state. Then based on them, we obtain necessary and sufficient full and partial separability criteria for multipartite qudit pure states. These criteria are very practical, operational and convenient.

[1]  L. Lamata,et al.  Inductive entanglement classification of four qubits under stochastic local operations and classical communication , 2007 .

[2]  A. Peres HIGHER ORDER SCHMIDT DECOMPOSITIONS , 1995, quant-ph/9504006.

[3]  S. Fei,et al.  A note on invariants and entanglements , 2001, quant-ph/0109073.

[4]  A. Sudbery,et al.  How entangled can two couples get , 2000, quant-ph/0005013.

[5]  D. Bruß Characterizing Entanglement , 2001, quant-ph/0110078.

[6]  George Jaroszkiewicz,et al.  Factorization and entanglement in quantum systems , 2003 .

[7]  Daowen Qiu,et al.  An entanglement measure based on two-order minors , 2009 .

[8]  Enrique Solano,et al.  Inductive classification of multipartite entanglement under stochastic local operations and classical communication , 2006 .

[9]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[10]  Li Dafa,et al.  Necessary and Sufficient Conditions of Separability for Multipartite Pure States , 2008 .

[11]  S. Stepney,et al.  Searching for highly entangled multi-qubit states , 2005 .

[12]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[13]  Charles H. Bennett,et al.  Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.

[14]  Dennis S. Bernstein,et al.  Matrix Mathematics: Theory, Facts, and Formulas with Application to Linear Systems Theory , 2005 .

[15]  Atsushi Higuchi,et al.  On maximal entanglement between two pairs in four-qubit pure states , 2007, 0704.2961.