Partial Oxidation-Induced Electrical Conductivity and Paramagnetism in a Ni(II) Tetraaza[14]annulene-Linked Metal Organic Framework.

We report the synthesis and characterization of a two-dimensional (2D) conjugated Ni(II) tetraaza[14]annulene-linked metal organic framework (NiTAA-MOF) where NiTAA is a macrocyclic MN4 (M = metal, N = nitrogen) compound. The structure of NiTAA-MOF was elucidated by Fourier-transform infrared, X-ray photoemission, and X-ray diffraction spectroscopies, in combination with density functional theory (DFT) calculations. When chemically oxidized by iodine, the insulating bulk NiTAA-MOF (σ < 10-10 S/cm) exhibits an electrical conductivity of 0.01 S/cm at 300 K, demonstrating the vital role of ligand oxidation in the electrical conductivity of 2D MOFs. Magnetization measurements show that iodine-doped NiTAA-MOF is paramagnetic with weak antiferromagnetic coupling due to the presence of organic radicals of oxidized ligands and high-spin Ni(II) sites of the missing-linker defects. In addition to providing further insights into the origin of the induced electrical conductivity in 2D MOFs, both pristine and iodine-doped NiTAA-MOF synthesized in this work could find potential applications in areas such as catalase mimics, catalysis, energy storage, and dynamic nuclear polarization-nuclear magnetic resonance (DNP-NMR).

[1]  W. Basirun,et al.  Indolenine – dibenzotetraaza [14] annulene Ni (II) complexes as sensitizers for dye - sensitized solar cells , 2019, Dyes and Pigments.

[2]  Daoben Zhu,et al.  Highly Conducting Neutral Coordination Polymer with Infinite Two-Dimensional Silver-Sulfur Networks. , 2018, Journal of the American Chemical Society.

[3]  Z. Bao,et al.  Synthetic Routes for a 2D Semiconductive Copper Hexahydroxybenzene Metal-Organic Framework. , 2018, Journal of the American Chemical Society.

[4]  S. Mannsfeld,et al.  A coronene-based semiconducting two-dimensional metal-organic framework with ferromagnetic behavior , 2018, Nature Communications.

[5]  Samia M. Hamed,et al.  Electron delocalization and charge mobility as a function of reduction in a metal–organic framework , 2018, Nature Materials.

[6]  Christopher H. Hendon,et al.  Signature of Metallic Behavior in the Metal-Organic Frameworks M3(hexaiminobenzene)2 (M = Ni, Cu). , 2017, Journal of the American Chemical Society.

[7]  A. Walsh,et al.  Metallic Conductivity in a Two-Dimensional Cobalt Dithiolene Metal-Organic Framework. , 2017, Journal of the American Chemical Society.

[8]  B. de Bruin,et al.  Diastereoselective Radical‐Type Cyclopropanation of Electron‐Deficient Alkenes Mediated by the Highly Active Cobalt(II) Tetramethyltetraaza[14]annulene Catalyst , 2017, ChemCatChem.

[9]  M. Dincǎ,et al.  2D Conductive Iron-Quinoid Magnets Ordering up to Tc = 105 K via Heterogenous Redox Chemistry. , 2017, Journal of the American Chemical Society.

[10]  Joseph S. Elias,et al.  Conductive MOF electrodes for stable supercapacitors with high areal capacitance. , 2017, Nature materials.

[11]  Qiang Xu,et al.  Metal-Organic Frameworks for Energy Applications , 2017 .

[12]  V. Deshpande,et al.  Hexaaminobenzene as a building block for a Family of 2D Coordination Polymers. , 2017, Journal of the American Chemical Society.

[13]  Mircea Dincă,et al.  Electrically Conductive Porous Metal-Organic Frameworks. , 2016, Angewandte Chemie.

[14]  N. Tang,et al.  Magnetic Properties of a Bottom‐Up Synthesis Analogous Graphene with N‐Doped Zigzag Edges , 2015 .

[15]  S. Magalhães,et al.  Spin glass induced by infinitesimal disorder in geometrically frustrated kagome lattice , 2015, 1507.02613.

[16]  Daoben Zhu,et al.  A two-dimensional π–d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour , 2015, Nature Communications.

[17]  Dennis Sheberla,et al.  Cu₃(hexaiminotriphenylene)₂: an electrically conductive 2D metal-organic framework for chemiresistive sensing. , 2015, Angewandte Chemie.

[18]  J. Ding,et al.  Ferromagnetism and Crossover of Positive Magnetoresistance to Negative Magnetoresistance in Na-Doped ZnO , 2015 .

[19]  Alán Aspuru-Guzik,et al.  High electrical conductivity in Ni₃(2,3,6,7,10,11-hexaiminotriphenylene)₂, a semiconducting metal-organic graphene analogue. , 2014, Journal of the American Chemical Society.

[20]  M. E. Foster,et al.  Tunable Electrical Conductivity in Metal-Organic Framework Thin-Film Devices , 2014, Science.

[21]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[22]  Mariko Miyachi,et al.  π-Conjugated nickel bis(dithiolene) complex nanosheet. , 2013, Journal of the American Chemical Society.

[23]  M. Olmstead,et al.  Indolenine meso-substituted dibenzotetraaza[14]annulene and its coordination chemistry toward the transition metal ions Mn(III), Fe(III), Co(II), Ni(II), Cu(II), and Pd(II). , 2013, Inorganic chemistry.

[24]  Christopher H. Hendon,et al.  Conductive metal-organic frameworks and networks: fact or fantasy? , 2012, Physical chemistry chemical physics : PCCP.

[25]  Bruce Dunn,et al.  New Porous Crystals of Extended Metal-Catecholates , 2012 .

[26]  Alexander M. Whyte,et al.  Planar Ni(II), Cu(II) and Co(II) tetraaza[14]annulenes: structural, electronic and magnetic properties and application to field effect transistors , 2012 .

[27]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[28]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[29]  Jangbae Kim,et al.  Noncovalently netted, photoconductive sheets with extremely high carrier mobility and conduction anisotropy from triphenylene-fused metal trigon conjugates. , 2009, Journal of the American Chemical Society.

[30]  S. Pati,et al.  Kagome network compounds and their novel magnetic properties. , 2008, Chemical communications.

[31]  E. Bill,et al.  Fe(III) complexes of 1,4,8,11-tetraaza[14]annulenes as catalase mimics. , 2007, Inorganic chemistry.

[32]  J. Marco,et al.  Theoretical and spectroscopic study of nickel(II) porphyrin derivatives. , 2007, The journal of physical chemistry. A.

[33]  T. Sassa,et al.  Metal-organic thin-film transistor (MOTFT) based on a bis(o-diiminobenzosemiquinonate) nickel(II) complex. , 2005, Journal of the American Chemical Society.

[34]  F. Neese,et al.  Molecular and electronic structures of bis-(o-diiminobenzosemiquinonato)metal(II) complexes (Ni, Pd, Pt), their monocations and -anions, and of dimeric dications containing weak metal-metal bonds. , 2003, Journal of the American Chemical Society.

[35]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[36]  P. Mountford Dibenzotetraaza[14]annulenes: versatile ligands for transition and main group metal chemistry , 1998 .

[37]  F. Wudl,et al.  Apparatus for two-probe conductivity measurements on compressed powders , 1990 .

[38]  L. Interrante,et al.  Synthesis and crystal structure of (hexamethyldibenzotetraazaannulenato)nickel-TCNQ. A mixed-stack donor-acceptor molecular solid , 1989 .

[39]  J. L. Stanton,et al.  Porphyrinic Molecular Metals , 1983 .

[40]  T. E. Phillips,et al.  Tetrabenzoporphyrinato)nickel(II) Iodide. A Doubly Mixed Valence Molecular Conductor , 1982 .

[41]  G. Rihs,et al.  Metallic Conductivity in Metal Tetraaza [14]Annulene Iodides: The Crystal Structures of Dihydrodibenzo‐[b, i]‐1, 4, 8, 11‐tetraazacyclotetradecinenickel and ‐palladium Iodides , 1981 .

[42]  V. Goedken,et al.  Crystal and molecular structure of the macrocyclic nickel(II) complex [Ni(C18H14N4)]: dibenzo[b,i][1,4,8,11]tetraaza[14]annulenenickel(II) , 1977 .

[43]  D. Dolphin,et al.  A Mechanistic Study of Metal Template Syntheses of Dibenzo-tetraaza(14)annulene Macrocyclic Complexes , 1976 .

[44]  S. Czellár,et al.  Temperature dependence of the magnetic susceptibility of Benzene-1,2-diamine-Nickel(II) and -Copper(II) Complexes , 1975 .

[45]  A. Balch,et al.  Complete Electron-Transfer Series of the [M-N4] Type , 1966 .

[46]  Yi Cui,et al.  Robust and conductive two-dimensional metal−organic frameworks with exceptionally high volumetric and areal capacitance , 2018 .

[47]  J. Lyding,et al.  New class of electrically conductive metallomacrocycles: iodine-doped dihydrodibenzo[b,i][1,4,8,11]tetra-azacyclotetradecine complexes , 1980 .

[48]  P. Chave,et al.  A template synthesis of metal complexes of macrocyclic ligands , 1969 .